Fault-tolerant embedding of paths in crossed cubes

被引:32
作者
Ma, Meijie [1 ]
Liu, Guizhen [2 ]
Xu, Jun-Ming [3 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Shandong Univ, Sch Math & Syst Sci, Jinan 250100, Peoples R China
[3] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国博士后科学基金; 中国国家自然科学基金;
关键词
Interconnection network; Crossed cube; Path; Embedding; Fault tolerance;
D O I
10.1016/j.tcs.2008.05.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The crossed cube CQ(n) is an important variant of the hypercube Q(n) and possesses many desirable properties for interconnection networks. This paper shows that in CQ(n) with f(v) faulty vertices and f(e) faulty edges there exists a fault-free path of length l between any two distinct fault-free vertices for each l satisfying 2(n-1) - 1 <= L <= 2(n) - f(v) - 1 provided that f(v) + f(e) <= n - 3, where the lower bound of l and the upper bound of f(v) + f(e) are tight for some n. Moreover, this result improves the known result that CQn is (n - 3)-Hamiltonian connected. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:110 / 116
页数:7
相关论文
共 22 条
[1]   Edge congestion and topological properties of crossed cubes [J].
Chang, CP ;
Sung, TY ;
Hsu, LH .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2000, 11 (01) :64-80
[2]   On some super fault-tolerant Hamiltonian graphs [J].
Chen, YC ;
Tsai, CH ;
Hsu, LH ;
Tan, JJM .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (03) :729-741
[3]  
DIETZFELBINGER M, 1997, P 29 ACM S THEOR COM, P373
[4]   THE CROSSED CUBE ARCHITECTURE FOR PARALLEL COMPUTATION [J].
EFE, K .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1992, 3 (05) :513-524
[5]   A VARIATION ON THE HYPERCUBE WITH LOWER DIAMETER [J].
EFE, K .
IEEE TRANSACTIONS ON COMPUTERS, 1991, 40 (11) :1312-1316
[6]   Optimal fault-tolerant embedding of paths in twisted cubes [J].
Fan, Jianxi ;
Lin, Xiaola ;
Pan, Yi ;
Jia, Xiaohua .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2007, 67 (02) :205-214
[7]   Complete path embeddings in crossed cubes [J].
Fan, Jianxi ;
Jia, Xiaohua ;
Lin, Xiaola .
INFORMATION SCIENCES, 2006, 176 (22) :3332-3346
[8]   Optimal path embedding in crossed cubes [J].
Fan, JX ;
Lin, XL ;
Jia, XH .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2005, 16 (12) :1190-1200
[9]   Node-pancyclicity and edge-pancyclicity of crossed cubes [J].
Fan, JX ;
Lin, XL ;
Jia, XH .
INFORMATION PROCESSING LETTERS, 2005, 93 (03) :133-138
[10]   The bipanconnectivity and m-panconnectivity of the folded hypercube [J].
Fang, Jywe-Fei .
THEORETICAL COMPUTER SCIENCE, 2007, 385 (1-3) :286-300