Commutators of Calderon-Zygmund operators related to admissible functions on spaces of homogeneous type and applications to Schrodinger operators

被引:19
|
作者
Liu Yu [1 ]
Huang JiZheng [2 ]
Dong JianFeng [3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] North China Univ Technol, Coll Sci, Beijing 100144, Peoples R China
[3] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
commutator; spaces of homogeneous type; stratified Lie groups; admissible function; Hardy space; reverse Holder inequality; Riesz transform; Schrodinger operators; HARDY-SPACES; BMO SPACES; SINGULAR-INTEGRALS; MEAN-OSCILLATION; RD-SPACES; BOUNDEDNESS; THEOREMS; DUALITY;
D O I
10.1007/s11425-012-4551-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be an RD-space. In this paper, the authors establish the boundedness of the commutator T (b) f = bT f - T(bf) on L (p) , p a (1,a), where T is a Caldern-Zygmund operator related to the admissible function rho and b a BMO (theta) (X) aS double dagger BMO(X). Moreover, they prove that T (b) is bounded from the Hardy space H (rho) (1) (X) into the weak Lebesgue space L (weak) (1) (X). This can be used to deal with the Schrodinger operators and Schrodinger type operators on the Euclidean space a"e (n) and the sub-Laplace Schrodinger operators on the stratified Lie group G.
引用
收藏
页码:1895 / 1913
页数:19
相关论文
共 50 条