Commutators of Calderon-Zygmund operators related to admissible functions on spaces of homogeneous type and applications to Schrodinger operators

被引:19
作者
Liu Yu [1 ]
Huang JiZheng [2 ]
Dong JianFeng [3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] North China Univ Technol, Coll Sci, Beijing 100144, Peoples R China
[3] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
commutator; spaces of homogeneous type; stratified Lie groups; admissible function; Hardy space; reverse Holder inequality; Riesz transform; Schrodinger operators; HARDY-SPACES; BMO SPACES; SINGULAR-INTEGRALS; MEAN-OSCILLATION; RD-SPACES; BOUNDEDNESS; THEOREMS; DUALITY;
D O I
10.1007/s11425-012-4551-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be an RD-space. In this paper, the authors establish the boundedness of the commutator T (b) f = bT f - T(bf) on L (p) , p a (1,a), where T is a Caldern-Zygmund operator related to the admissible function rho and b a BMO (theta) (X) aS double dagger BMO(X). Moreover, they prove that T (b) is bounded from the Hardy space H (rho) (1) (X) into the weak Lebesgue space L (weak) (1) (X). This can be used to deal with the Schrodinger operators and Schrodinger type operators on the Euclidean space a"e (n) and the sub-Laplace Schrodinger operators on the stratified Lie group G.
引用
收藏
页码:1895 / 1913
页数:19
相关论文
共 42 条
[1]  
[Anonymous], 1971, Lecture Notes in Mathematics
[2]  
[Anonymous], 1981, TRABAJOS MAT
[3]   Composition of fractional Orlicz maximal operators and A 1-weights on spaces of homogeneous type [J].
Bernardis, Ana L. ;
Pradolini, Gladis ;
Lorente, Maria ;
Silvina Riveros, Maria .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (08) :1509-1518
[4]   Commutators of Riesz Transforms Related to Schrodinger Operators [J].
Bongioanni, B. ;
Harboure, E. ;
Salinas, O. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (01) :115-134
[5]  
Bramanti M, 2005, REV MAT IBEROAM, V21, P511
[6]  
Bramanti M, 1996, B UNIONE MAT ITAL, V10B, P843
[7]  
Burger N, 1978, C R ACAD SC PARIS 1, V286, P139
[8]   Hardy spaces HLpRn) associated with operators satisfying k-Davies-Gaffney estimates [J].
Cao Jun ;
Yang DaChun .
SCIENCE CHINA-MATHEMATICS, 2012, 55 (07) :1403-1440
[9]  
Cao J, 2010, HOUSTON J MATH, V36, P1067
[10]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645