A novel feature selection approach based on clustering algorithm

被引:8
|
作者
Moslehi, Fateme [1 ]
Haeri, Abdorrahman [2 ]
机构
[1] Iran Univ Sci & Technol, Informat Technol Engn, Tehran, Iran
[2] Iran Univ Sci & Technol, Sch Ind Engn, Tehran, Iran
关键词
Data mining; clustering; K-means algorithm; feature selection; FEATURE SUBSET-SELECTION; GRAVITATIONAL SEARCH ALGORITHM; PARTICLE SWARM OPTIMIZATION; MUTUAL INFORMATION; CLASSIFICATION; HYBRID; REDUCTION;
D O I
10.1080/00949655.2020.1822358
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Clustering is one of the main methods of data mining. K-means algorithm is one of the most common clustering algorithms due to its efficiency and ease of use. In many data mining issues, the dataset contains a large number of fields and, therefore, the identification of the effective fields is an important issue. Appling the proposed algorithm, the important variables of the dataset would be identified. In the proposed method, the dataset is clustered in several stages and in each step the characteristics of the created clusters are examined and the features that transform the structure of clusters are introduced as effective features of the dataset. The proposed method was examined on 4 datasets and the results of this method were compared with other similar work and demonstrated that using this algorithm would eliminate redundant and unrelated features of the dataset and improve classification accuracy.
引用
收藏
页码:581 / 604
页数:24
相关论文
共 50 条
  • [1] Introducing clustering based population in Binary Gravitational Search Algorithm for Feature Selection
    Guha, Ritam
    Ghosh, Manosij
    Chakrabarti, Akash
    Sarkar, Ram
    Mirjalili, Seyedali
    APPLIED SOFT COMPUTING, 2020, 93
  • [2] Interaction-based clustering algorithm for feature selection: a multivariate filter approach
    Esfandiari, Ahmad
    Khaloozadeh, Hamid
    Farivar, Faezeh
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (05) : 1769 - 1782
  • [3] An improved feature selection algorithm based on graph clustering and ant colony optimization
    Ghimatgar, Hojat
    Kazemi, Kamran
    Helfroush, Mohamamd Sadegh
    Aarabi, Ardalan
    KNOWLEDGE-BASED SYSTEMS, 2018, 159 : 270 - 285
  • [4] A Clustering Based Genetic Algorithm for Feature Selection
    Rostami, Mehrdad
    Moradi, Parham
    2014 6TH CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2014, : 112 - 116
  • [5] A fuzzy clustering based algorithm for feature selection
    Sun, HJ
    Wang, SR
    Mei, Z
    2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, 2002, : 1993 - 1998
  • [6] A novel community detection based genetic algorithm for feature selection
    Rostami, Mehrdad
    Berahmand, Kamal
    Forouzandeh, Saman
    JOURNAL OF BIG DATA, 2021, 8 (01)
  • [7] Interaction-based clustering algorithm for feature selection: a multivariate filter approach
    Ahmad Esfandiari
    Hamid Khaloozadeh
    Faezeh Farivar
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 1769 - 1782
  • [8] A novel dissimilarity metric based on feature-to-feature scatter frequencies for clustering-based feature selection in biomedical data
    Sheikhi, Ghazaal
    Altincay, Hakan
    COMPUTATIONAL INTELLIGENCE, 2021, 37 (04) : 1865 - 1889
  • [9] A new unsupervised feature selection algorithm using similarity-based feature clustering
    Zhu, Xiaoyan
    Wang, Yu
    Li, Yingbin
    Tan, Yonghui
    Wang, Guangtao
    Song, Qinbao
    COMPUTATIONAL INTELLIGENCE, 2019, 35 (01) : 2 - 22
  • [10] A Clustering Strategy-Based Evolutionary Algorithm for Feature Selection in Classification
    Zhang, Baohang
    Wang, Zigian
    Lei, Zhenyu
    Yu, Jiatianyi
    Jin, Ting
    Gao, Shangce
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE. THEORY AND APPLICATIONS, IEA/AIE 2023, PT I, 2023, 13925 : 49 - 59