d4PDF: large-ensemble and high-resolution climate simulations for global warming risk assessment

被引:67
作者
Ishii, Masayoshi [1 ,2 ]
Mori, Nobuhito [3 ]
机构
[1] Meteorol Res Inst, Dept Atmosphere Ocean & Earth Syst Modeling Res, 1-1 Nagamine, Tsukuba, Ibaraki 3050052, Japan
[2] Japan Meteorol Business Support Ctr, Climate & Environm Res Promot, Chiyoda Ku, Kanda Nishikicho, Tokyo 1010054, Japan
[3] Kyoto Univ, Disaster Prevent Res Inst, Uji, Kyoto 6110011, Japan
关键词
Global warming; d4PDF; Ensemble climate simulation; Atmospheric model; Dynamical downscaling; Detection and attribution; Impact assessment; Climate change adaptation; Natural hazard; Storm surge; FUTURE CHANGES; TROPICAL CYCLONES; PRECIPITATION EXTREMES; INTERNAL VARIABILITY; IMPACT ASSESSMENT; COASTAL HAZARDS; BIAS CORRECTION; NORTH PACIFIC; MODEL; JAPAN;
D O I
10.1186/s40645-020-00367-7
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
A large-ensemble climate simulation database, which is known as the database for policy decision-making for future climate changes (d4PDF), was designed for climate change risk assessments. Since the completion of the first set of climate simulations in 2015, the database has been growing continuously. It contains the results of ensemble simulations conducted over a total of thousands years respectively for past and future climates using high-resolution global (60 km horizontal mesh) and regional (20 km mesh) atmospheric models. Several sets of future climate simulations are available, in which global mean surface air temperatures are forced to be higher by 4 K, 2 K, and 1.5 K relative to preindustrial levels. Nonwarming past climate simulations are incorporated in d4PDF along with the past climate simulations. The total data volume is approximately 2 petabytes. The atmospheric models satisfactorily simulate the past climate in terms of climatology, natural variations, and extreme events such as heavy precipitation and tropical cyclones. In addition, data users can obtain statistically significant changes in mean states or weather and climate extremes of interest between the past and future climates via a simple arithmetic computation without any statistical assumptions. The database is helpful in understanding future changes in climate states and in attributing past climate events to global warming. Impact assessment studies for climate changes have concurrently been performed in various research areas such as natural hazard, hydrology, civil engineering, agriculture, health, and insurance. The database has now become essential for promoting climate and risk assessment studies and for devising climate adaptation policies. Moreover, it has helped in establishing an interdisciplinary research community on global warming across Japan.
引用
收藏
页数:22
相关论文
共 138 条
[61]   The HadGEM2 family of Met Office Unified Model climate configurations [J].
Martin, G. M. ;
Bellouin, N. ;
Collins, W. J. ;
Culverwell, I. D. ;
Halloran, P. R. ;
Hardiman, S. C. ;
Hinton, T. J. ;
Jones, C. D. ;
McDonald, R. E. ;
McLaren, A. J. ;
O'Connor, F. M. ;
Roberts, M. J. ;
Rodriguez, J. M. ;
Woodward, S. ;
Best, M. J. ;
Brooks, M. E. ;
Brown, A. R. ;
Butchart, N. ;
Dearden, C. ;
Derbyshire, S. H. ;
Dharssi, I. ;
Doutriaux-Boucher, M. ;
Edwards, J. M. ;
Falloon, P. D. ;
Gedney, N. ;
Gray, L. J. ;
Hewitt, H. T. ;
Hobson, M. ;
Huddleston, M. R. ;
Hughes, J. ;
Ineson, S. ;
Ingram, W. J. ;
James, P. M. ;
Johns, T. C. ;
Johnson, C. E. ;
Jones, A. ;
Jones, C. P. ;
Joshi, M. M. ;
Keen, A. B. ;
Liddicoat, S. ;
Lock, A. P. ;
Maidens, A. V. ;
Manners, J. C. ;
Milton, S. F. ;
Rae, J. G. L. ;
Ridley, J. K. ;
Sellar, A. ;
Senior, C. A. ;
Totterdell, I. J. ;
Verhoef, A. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) :723-757
[62]  
Masuya S., 2018, J JPN SOC CIV ENG B1, V74, P121, DOI [10.2208/jscejhe.74.5I121, DOI 10.2208/JSCEJHE.74.5I121]
[63]   The robustness of future changes in Northern Hemisphere blocking: A large ensemble projection with multiple sea surface temperature patterns [J].
Matsueda, Mio ;
Endo, Hirokazu .
GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (10) :5158-5166
[64]   Automatic Detection of Stationary Fronts around Japan Using a Deep Convolutional Neural Network [J].
Matsuoka, Daisuke ;
Sugimoto, Shiori ;
Nakagawa, Yujin ;
Kawahara, Shintaro ;
Araki, Fumiaki ;
Onoue, Yosuke ;
Iiyama, Masaaki ;
Koyamada, Koji .
SOLA, 2019, 15 :154-159
[65]   Variability and Predictability of North Atlantic Hurricane Frequency in a Large Ensemble of High-Resolution Atmospheric Simulations [J].
Mei, Wei ;
Kamae, Youichi ;
Xie, Shang-Ping ;
Yoshida, Kohei .
JOURNAL OF CLIMATE, 2019, 32 (11) :3153-3167
[66]  
MetOffice, 2018, UKCP18 SCI OV EX SUM
[67]  
Ministry of the Environment, 2018, CLIM CHANG AD LAW
[68]   OVER 5,000 YEARS OF ENSEMBLE FUTURE CLIMATE SIMULATIONS BY 60-KM GLOBAL AND 20-KM REGIONAL ATMOSPHERIC MODELS [J].
Mizuta, Ryo ;
Murata, Akihiko ;
Ishii, Masayoshi ;
Shiogama, Hideo ;
Hibino, Kenshi ;
Mori, Nobuhito ;
Arakawa, Osamu ;
Imada, Yukiko ;
Yoshida, Kohei ;
Aoyagi, Toshinori ;
Kawase, Hiroaki ;
Mori, Masato ;
Okada, Yasuko ;
Shimura, Tomoya ;
Nagatomo, Toshiharu ;
Ikeda, Mikiko ;
Endo, Hirokazu ;
Nosaka, Masaya ;
Arai, Miki ;
Takahashi, Chiharu ;
Tanaka, Kenji ;
Takemi, Tetsuya ;
Tachikawa, Yasuto ;
Temur, Khujanazarov ;
Kamae, Youichi ;
Watanabe, Masahiro ;
Sasaki, Hidetaka ;
Kitoh, Akio ;
Takayabu, Izuru ;
Nakakita, Eiichi ;
Kimoto, Masahide .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2017, 98 (07) :1383-1398
[69]   Climate Simulations Using MRI-AGCM3.2 with 20-km Grid [J].
Mizuta, Ryo ;
Yoshimura, Hiromasa ;
Murakami, Hiroyuki ;
Matsueda, Mio ;
Endo, Hirokazu ;
Ose, Tomoaki ;
Kamiguchi, Kenji ;
Hosaka, Masahiro ;
Sugi, Masato ;
Yukimoto, Seiji ;
Kusunoki, Shoji ;
Kitoh, Akio .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2012, 90A :233-258
[70]  
MLIT, 2019, TECHN REV M FLOOD CO