Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 2: image classification

被引:27
作者
Montejo, Ludguier D. [1 ]
Jia, Jingfei [1 ]
Kim, Hyun K. [2 ]
Netz, Uwe J. [3 ,4 ]
Blaschke, Sabine [5 ]
Mueller, Gerhard A. [5 ]
Hielscher, Andreas H. [1 ,2 ,6 ]
机构
[1] Columbia Univ, Dept Biomed Engn, New York, NY 10025 USA
[2] Columbia Univ, Med Ctr, Dept Radiol, New York, NY 10032 USA
[3] Laser & Med Technol GmbH Berlin, D-14195 Berlin, Dahlem, Germany
[4] Charite, Dept Med Phys & Laser Med, D-10117 Berlin, Germany
[5] Univ Med Ctr Gottingen, Dept Nephrol & Rheumatol, D-37075 Gottingen, Germany
[6] Columbia Univ, Dept Elect Engn, New York, NY 10025 USA
基金
美国国家卫生研究院;
关键词
optical tomography; rheumatoid arthritis; computer-aided diagnosis; image classification; light propagation in tissue; medical imaging;
D O I
10.1117/1.JBO.18.7.076002
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This is the second part of a two-part paper on the application of computer-aided diagnosis to diffuse optical tomography (DOT) for diagnosing rheumatoid arthritis (RA). A comprehensive analysis of techniques for the classification of DOT images of proximal interphalangeal joints of subjects with and without RA is presented. A method for extracting heuristic features from DOT images was presented in Part 1. The ability of five classification algorithms to accurately label each DOT image as belonging to a subject with or without RA is analyzed here. The algorithms of interest are the k-nearest-neighbors, linear and quadratic discriminant analysis, self-organizing maps, and support vector machines (SVM). With a polynomial SVM classifier, we achieve 100.0% sensitivity and 97.8% specificity. Lower bounds for these results (at 95.0% confidence level) are 96.4% and 93.8%, respectively. Image features most predictive of RA are from the spatial variation of optical properties and the absolute range in feature values. The optimal classifiers are low-dimensional combinations (<7 features). These results underscore the high potential for DOT to become a clinically useful diagnostic tool and warrant larger prospective clinical trials to conclusively demonstrate the ultimate clinical utility of this approach. (c) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 2006, Pattern recognition and machine learning
[2]  
Back Thomas, 1996, EVOLUTIONARY ALGORIT
[3]  
Cortes C., 1995, Machine Learning, V297, P273, DOI [DOI 10.1007/BF00994018, DOI 10.1023/A:1022627411411]
[4]   PROTEOGLYCAN FRAGMENTS IN JOINT FLUID - INFLUENCE OF ARTHROSIS AND INFLAMMATION [J].
DAHLBERG, L ;
RYD, L ;
HEINEGARD, D ;
LOHMANDER, LS .
ACTA ORTHOPAEDICA SCANDINAVICA, 1992, 63 (04) :417-423
[5]   Frequency-Domain Optical Tomographic Imaging of Arthritic Finger Joints [J].
Hielscher, Andreas H. ;
Kim, Hyun Keol ;
Montejo, Ludguier D. ;
Blaschke, Sabine ;
Netz, Uwe J. ;
Zwaka, Paul A. ;
Illing, Gerd ;
Mueller, Gerhard A. ;
Beuthan, Juergen .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (10) :1725-1736
[6]  
KAPLAN JE, 1990, J ACQ IMMUN DEF SYND, V3, P1096
[7]   Computer-aided classification of rheumatoid arthritis in finger joints using frequency domain optical tomography [J].
Klose, C. D. ;
Kim, H. K. ;
Netz, U. ;
Blaschke, S. ;
Zwaka, P. A. ;
Mueller, G. A. ;
Beuthan, J. ;
Hielscher, A. H. .
ADVANCED BIOMEDICAL AND CLINICAL DIAGNOSTIC SYSTEMS VII, 2009, 7169
[8]   Computer-aided interpretation approach for optical tomographic images [J].
Klose, Christian D. ;
Klose, Alexander D. ;
Netz, Uwe J. ;
Scheel, Alexander K. ;
Beuthan, Juergen ;
Hielscher, Andreas H. .
JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (06)
[9]   Multiparameter classifications of optical tomographic images [J].
Klose, Christian D. ;
Klose, Alexander D. ;
Netz, Uwe ;
Beuthan, Juergen ;
Hielscher, Andreas H. .
JOURNAL OF BIOMEDICAL OPTICS, 2008, 13 (05)
[10]  
McLachlan G. J., 1992, Discriminant Analysis and Statistical Pattern Recognition. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics