On the geometry of linear Weingarten hypersurfaces in the hyperbolic space

被引:10
作者
Aquino, Cicero P. [1 ]
de Lima, Henrique F. [2 ]
机构
[1] Univ Fed Piaui, Dept Matemat, BR-64049550 Teresina, Piaui, Brazil
[2] Univ Fed Campina Grande, Dept Matemat & Estat, BR-58429970 Campina Grande, Paraiba, Brazil
来源
MONATSHEFTE FUR MATHEMATIK | 2013年 / 171卷 / 3-4期
关键词
Hyperbolic space; Linear Weingarten hypersurfaces; Totally umbilical hypersurfaces; Hyperbolic cylinders; CONSTANT SCALAR CURVATURE; RIEMANNIAN MANIFOLDS;
D O I
10.1007/s00605-013-0476-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we apply some forms of generalized maximum principles in order to study the geometry of complete linear Weingarten hypersurfaces with nonnegative sectional curvature immersed in the hyperbolic space. In this setting, under the assumption that the mean curvature attains its maximum, we prove that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder.
引用
收藏
页码:259 / 268
页数:10
相关论文
共 13 条
[1]  
Abe N., 1987, YOKOHAMA MATH J, V35, P123
[2]   The geometry of closed conformal vector fields on Riemannian spaces [J].
Caminha, A. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (02) :277-300
[3]  
Cartan E., 1938, Ann. Mat. Pura Appl., V17, P177
[4]   HYPERSURFACES WITH CONSTANT SCALAR CURVATURE [J].
CHENG, SY ;
YAU, ST .
MATHEMATISCHE ANNALEN, 1977, 225 (03) :195-204
[5]   LINEAR WEINGARTEN HYPERSURFACES IN A UNIT SPHERE [J].
Li, Haizhong ;
Suh, Young Jin ;
Wei, Guoxin .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (02) :321-329
[6]   Global rigidity theorems of hypersurfaces [J].
Li, HZ .
ARKIV FOR MATEMATIK, 1997, 35 (02) :327-351
[7]  
Li HZ, 1996, MATH ANN, V305, P665
[8]   ISOMETRIC IMMERSIONS OF RIEMANNIAN MANIFOLDS [J].
OMORI, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1967, 19 (02) :205-+
[9]  
Ryan P.J., 1971, OSAKA J MATH, V8, P251
[10]  
Shu SC, 2007, BALK J GEOM APPL, V12, P107