A VARIANT OF HOFSTADTER'S SEQUENCE AND FINITE AUTOMATA

被引:7
作者
Allouche, Jean-Paul [1 ]
Shallit, Jeffrey [2 ]
机构
[1] Univ Paris 06, Inst Math, CNRS, F-75752 Paris 05, France
[2] Univ Waterloo, Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
关键词
Hofstadter's sequence; recurrence; automatic sequence; finite automaton;
D O I
10.1017/S1446788713000074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following up on a paper of Balamohan et al. ['On the behavior of a variant of Hofstadter's q-sequence', J. Integer Seq. 10 (2007)], we analyze a variant of Hofstadter's Q-sequence and show that its frequency sequence is 2-automatic. An automaton computing the sequence is explicitly given.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 11 条
[1]   Indian kolam, drawings on the sand in the Vanuatu Islands, Sierpinski curve, and morphisms of monoids [J].
Allouche, Gabrielle ;
Allouche, Jean-Paul ;
Shallit, Jeffrey .
ANNALES DE L INSTITUT FOURIER, 2006, 56 (07) :2115-2130
[2]  
Allouche J.P., 2003, Automatic sequences: Theory, applications, generalizations
[3]  
Allouche JP, 2003, THEOR COMPUT SCI, V307, P3, DOI 10.1016/S0324-3975(03)00090-2
[4]  
Balamohan B, 2008, J INTEGER SEQ, V11
[5]   Spot-Based Generations for Meta-Fibonacci Sequences [J].
Dalton, Barnaby ;
Rahman, Mustazee ;
Tanny, Stephen .
EXPERIMENTAL MATHEMATICS, 2011, 20 (02) :129-137
[6]  
Everest G., 2003, Recurrence Sequences
[7]  
Hofstadter D.R., 1979, GODEL ESCHER BACH ET
[8]  
Isgur A., 2011, PREPRINT
[9]  
Pinn K., 1999, Complexity, V4, P41
[10]  
Rahman M., 2012, ATL ELECT J MATH, V5, P16