Demonstration of Quantum Entanglement between a Single Electron Spin Confined to an InAs Quantum Dot and a Photon

被引:114
作者
Schaibley, J. R. [1 ]
Burgers, A. P. [1 ]
McCracken, G. A. [1 ]
Duan, L. -M. [1 ]
Berman, P. R. [1 ]
Steel, D. G. [1 ]
Bracker, A. S. [2 ]
Gammon, D. [2 ]
Sham, L. J. [3 ]
机构
[1] Univ Michigan, Harrison M Randall Lab Phys, Ann Arbor, MI 48109 USA
[2] USN, Res Lab, Washington, DC 20375 USA
[3] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
ATOM; INTERFACE; NETWORKS; DISTANCE;
D O I
10.1103/PhysRevLett.110.167401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59 +/- 0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3 x 10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network. DOI: 10.1103/PhysRevLett.110.167401
引用
收藏
页数:5
相关论文
共 33 条
[1]   Quantum-dot spin-state preparation with near-unity fidelity [J].
Atatüre, M ;
Dreiser, J ;
Badolato, A ;
Högele, A ;
Karrai, K ;
Imamoglu, A .
SCIENCE, 2006, 312 (5773) :551-553
[2]   Site-controlled growth and luminescence of InAs quantum dots using in situ Ga-assisted deoxidation of patterned substrates [J].
Atkinson, P. ;
Kiravittaya, S. ;
Benyoucef, M. ;
Rastelli, A. ;
Schmidt, O. G. .
APPLIED PHYSICS LETTERS, 2008, 93 (10)
[3]   Deterministic coupling of single quantum dots to single nanocavity modes [J].
Badolato, A ;
Hennessy, K ;
Atatüre, M ;
Dreiser, J ;
Hu, E ;
Petroff, PM ;
Imamoglu, A .
SCIENCE, 2005, 308 (5725) :1158-1161
[4]   Observation of entanglement between a single trapped atom and a single photon [J].
Blinov, BB ;
Moehring, DL ;
Duan, LM ;
Monroe, C .
NATURE, 2004, 428 (6979) :153-157
[5]   CORRELATION BETWEEN PHOTONS IN 2 COHERENT BEAMS OF LIGHT [J].
BROWN, RH ;
TWISS, RQ .
NATURE, 1956, 177 (4497) :27-29
[6]   Creation of entangled states of distant atoms by interference [J].
Cabrillo, C ;
Cirac, JI ;
García-Fernández, P ;
Zoller, P .
PHYSICAL REVIEW A, 1999, 59 (02) :1025-1033
[7]   Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength [J].
De Greve, Kristiaan ;
Yu, Leo ;
McMahon, Peter L. ;
Pelc, Jason S. ;
Natarajan, Chandra M. ;
Kim, Na Young ;
Abe, Eisuke ;
Maier, Sebastian ;
Schneider, Christian ;
Kamp, Martin ;
Hoefling, Sven ;
Hadfield, Robert H. ;
Forchel, Alfred ;
Fejer, M. M. ;
Yamamoto, Yoshihisa .
NATURE, 2012, 491 (7424) :421-+
[8]   Colloquium: Quantum networks with trapped ions [J].
Duan, L. -M. ;
Monroe, C. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1209-1224
[9]   Long-distance quantum communication with atomic ensembles and linear optics [J].
Duan, LM ;
Lukin, MD ;
Cirac, JI ;
Zoller, P .
NATURE, 2001, 414 (6862) :413-418
[10]   Unified theory of consequences of spontaneous emission in a Λ system -: art. no. 195327 [J].
Economou, SE ;
Liu, RB ;
Sham, LJ ;
Steel, DG .
PHYSICAL REVIEW B, 2005, 71 (19)