SHARP BOUNDS FOR INITIAL COEFFICIENTS AND THE SECOND HANKEL DETERMINANT

被引:4
作者
Ali, Rosihan M. [1 ]
Lee, See Keong [1 ]
Obradovic, Milutin [2 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia
[2] Univ Belgrade, Dept Math, Fac Civil Engn, Bulevar Kralja Aleksandra 73, Belgrade 11000, Serbia
关键词
Coefficient estimates; Hankel determinants; univalent functions; Bazilevic functions;
D O I
10.4134/BKMS.b190520
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For functions f (z) = z + a(2)z(2) + a(3)z(3) + ... belonging to particular classes, this paper finds sharp bounds for the initial coefficients a(2), a(3), a(4), as well as the sharp estimate for the second order Hankel determinant H-2 (2) = a(2)a(4) - a(3)(2). Two classes are treated: first is the class consisting of f (z) = z + a(2)z(2) + a(3)z(3) + ... in the unit disk D satisfying vertical bar(z/f(z)(1+alpha) f'(z) - 1 vertical bar < lambda, 0 < alpha < 1, 0 < lambda <= 1. The second class consists of Bazilevic functions 1(z) = z+a(2)z(2)+a(3)z(3)+... in D satisfying Re {(f(z)/z(alpha-1 )f'(z)} > 0, alpha > 0.
引用
收藏
页码:839 / 850
页数:12
相关论文
共 14 条
  • [1] Aksentiev LA., 1958, Izvestiya Vysshikh Uchebnykh Zavedenii Matematika, V3, P3
  • [2] Fournier R., 2007, Complex Variables and Elliptic Equations, V52, P1, DOI DOI 10.1080/17476930600780149
  • [3] Krishna DV, 2015, STUD U BABES-BOL MAT, V60, P413
  • [4] Bounds for the second Hankel determinant of certain univalent functions
    Lee, See Keong
    Ravichandran, V.
    Supramaniam, Shamani
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [5] Marjono, 2017, MEDITERR J MATH, V14, DOI 10.1007/s00009-017-0958-y
  • [6] Obradovic M., 1999, HOKKAIDO MATH J, V28, P557, DOI [10.14492/hokmj/1351001237, DOI 10.14492/HOKMJ/1351001237]
  • [7] Obradovic M., 1998, Hokkaido Math. J., V27, P329, DOI [10.14492/hokmj/1351001289, DOI 10.14492/HOKMJ/1351001289]
  • [8] Obradovic M, 2016, B MALAYS MATH SCI SO, V39, P1259, DOI 10.1007/s40840-015-0263-5
  • [9] SCHWARZIAN DERIVATIVE AND UNIVALENT FUNCTIONS
    OZAKI, S
    NUNOKAWA, M
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 33 (02) : 392 - &
  • [10] POMMERENKE C, 1966, J LONDON MATH SOC, V41, P111