Inverse spectral problems and closed exponential systems

被引:70
作者
Horváth, M [1 ]
机构
[1] Tech Univ Budapest, Inst Math, Budapest, Hungary
关键词
D O I
10.4007/annals.2005.162.885
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the inverse eigenvalue problem of the Schrodinger operator defined on a finite interval. We give optimal and almost optimal conditions for a set of eigenvalues to determine the Schrodinger operator. These conditions are simple closedness properties of the exponential system corresponding to the known eigenvalues. The statements contain nearly all former results of this topic. We give also conditions for recovering the Weyl-Titchmarsh m-function from its values m(lambda(n)).
引用
收藏
页码:885 / 918
页数:34
相关论文
共 21 条
[1]   About a question of intrinsic value theory. [J].
Ambarzumian, V. .
ZEITSCHRIFT FUR PHYSIK, 1929, 53 (9-10) :690-695
[2]  
Avdonin S., 1974, Vestn. Leningr. Univ., Ser. Mat., V13, P5
[3]  
Beckenbach E. F., 1971, INEQUALITIES
[4]   A proof of the local Borg-Marchenko theorem [J].
Bennewitz, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 218 (01) :131-132
[6]  
BORG G, 1952, P 11 SCAND C MATH, P276
[7]   Inverse spectral analysis with partial information on the potential .3. Updating boundary conditions [J].
delRio, R ;
Gesztesy, F ;
Simon, B .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1997, 1997 (15) :751-758
[8]  
Gesztesy F, 2000, COMMUN MATH PHYS, V211, P271
[9]   A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure [J].
Gesztesy, F ;
Simon, B .
ANNALS OF MATHEMATICS, 2000, 152 (02) :593-643
[10]   Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum [J].
Gesztesy, F ;
Simon, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (06) :2765-2787