Self-organizing time map: An abstraction of temporal multivariate patterns

被引:33
作者
Sarlin, Peter [1 ]
机构
[1] Abo Akad Univ, Dept Informat Technol, Turku Ctr Comp Sci, FIN-20520 Turku, Finland
关键词
Self-organizing time map; Self-organizing map; Exploratory temporal structure analysis; Dynamic visual clustering; Exploratory data analysis; SOM;
D O I
10.1016/j.neucom.2012.07.011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper adopts and adapts Kohonen's standard self-organizing map (SUM) for exploratory temporal structure analysis. The self-organizing time map (SOTM) implements SUM-type learning to one-dimensional arrays for individual time units, preserves the orientation with short-term memory and arranges the arrays in an ascending order of time. The two-dimensional representation of the SOTM attempts thus twofold topology preservation, where the horizontal direction preserves time topology and the vertical direction data topology. This enables discovering the occurrence and exploring the properties of temporal structural changes in data. For representing qualities and properties of SOTMs, we adapt measures and visualizations from the standard SUM paradigm, as well as introduce a measure of temporal structural changes. The functioning of the SOTM, and its visualizations and quality and property measures, are illustrated on artificial toy data. The usefulness of the SOTM in a real-world setting is shown on poverty, welfare and development indicators. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:496 / 508
页数:13
相关论文
共 51 条
  • [1] Agarwal P., 2008, Self-organising maps: Applications in geographic information science
  • [2] Space-in-Time and Time-in-Space Self-Organizing Maps for Exploring Spatiotemporal Patterns
    Andrienko, G.
    Andrienko, N.
    Bremm, S.
    Schreck, T.
    von Landesberger, T.
    Bak, P.
    Keim, D.
    [J]. COMPUTER GRAPHICS FORUM, 2010, 29 (03) : 913 - 922
  • [3] [Anonymous], 1994, INT C NEUR INF PROC
  • [4] Visualizing distortions and recovering topology in continuous projection techniques
    Aupetit, Michael
    [J]. NEUROCOMPUTING, 2007, 70 (7-9) : 1304 - 1330
  • [5] Back B., 2001, International Journal of Accounting Information Systems, V2, P249, DOI 10.1016/S1467-0895(01)00018-5
  • [6] Back B., 1998, ACCOUNTING MANAGEMEN, V8, P191, DOI [10.1016/S0959-8022(98)00009-5, DOI 10.1016/S0959-8022(98)00009-5, DOI 10.1016/S0959-8022(00009-5]
  • [7] BARRETO GA, 2001, INT J COMPUT RES, V10, P139
  • [8] A taxonomy for spatiotemporal connectionist networks revisited:: The unsupervised case
    Barreto, GD
    Araújo, AFR
    [J]. NEURAL COMPUTATION, 2003, 15 (06) : 1255 - 1320
  • [9] Barreto GA, 2007, STUD COMPUT INTELL, V77, P135
  • [10] Bertin J., 1983, SEMIOLOGY GRAPHICS D