Expanding sacrificially printed microfluidic channel-embedded paper devices for construction of volumetric tissue modelsin vitro

被引:25
作者
Li, Hongbin [1 ,2 ,3 ]
Cheng, Feng [1 ,3 ]
Li, Wanlu [1 ]
Cao, Xia [1 ]
Wang, Zixuan [1 ]
Wang, Mian [1 ]
Robledo-Lara, Juan Antonio [1 ,4 ]
Liao, Junlong [1 ]
Chavez-Madero, Carolina [1 ,5 ]
Hassan, Shabir [1 ]
Xie, Jingwei [6 ]
Trujillo-de Santiago, Grissel [5 ]
Alvarez, Mario Moises [5 ]
He, Jinmei [3 ]
Zhang, Yu Shrike [1 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Div Engn Med, Cambridge, MA 02139 USA
[2] Qiqihar Univ, Coll Light Ind & Text, Qiqihar 161000, Heilongjiang, Peoples R China
[3] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Heilongjiang, Peoples R China
[4] Tecnol Monterrey, Dept Ingn Mecatron & Elect, Escuela Ingn & Ciencias, San Luis Potosi 78211, San Luis Potosi, Mexico
[5] Tecnol Monterrey, Ctr Biotecnol FEMSA, Monterrey 64849, Mexico
[6] Univ Nebraska Med Ctr, Holland Regenerat Med Program, Omaha, NE 68198 USA
基金
美国国家卫生研究院;
关键词
bacterial cellulose; 3D printing; microfluidics; paper-based tissue model; tissue engineering; tissue model engineering; ORGANS-ON-CHIPS; BACTERIAL CELLULOSE; IN-VITRO; MECHANICAL-PROPERTIES; POTENTIAL SCAFFOLD; STEM-CELLS; A-CHIP; CANCER; HYDROGEL; FABRICATION;
D O I
10.1088/1758-5090/abb11e
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We report a method for expanding microchannel-embedded paper devices using a precisely controlled gas-foaming technique for the generation of volumetric tissue modelsin vitro. We successfully fabricated hollow, perfusable microchannel patterns contained in a densely entangled network of bacterial cellulose nanofibrils using matrix-assisted sacrificial three-dimensional printing, and demonstrated the maintenance of their structural integrity after gas-foaming-enabled expansion in an aqueous solution of NaBH4. The resulting expanded microchannel-embedded paper devices showed multilayered laminar structures with controllable thicknesses as a function of both NaBH(4)concentration and expansion time. With expansion, the thickness and porosity of the bacterial cellulose network were significantly increased. As such, cellular infiltration was promoted comparing to as-prepared, non-expanded devices. This simple technique enables the generation of truly volumetric, cost-effective human-based tissue models, such as vascularized tumor models, for potential applications in preclinical drug screening and personalized therapeutic selection.
引用
收藏
页数:17
相关论文
共 76 条
[1]   Skeletal muscle-on-a-chip: an in vitro model to evaluate tissue formation and injury [J].
Agrawal, Gaurav ;
Aung, Aereas ;
Varghese, Shyni .
LAB ON A CHIP, 2017, 17 (20) :3447-3461
[2]   Electrical Textile Valves for Paper Microfluidics [J].
Ainla, Alar ;
Hamedi, Mahiar M. ;
Guder, Firat ;
Whitesides, George M. .
ADVANCED MATERIALS, 2017, 29 (38)
[3]   Towards artificial tissue models: past, present, and future of 3D bioprinting [J].
Arslan-Yildiz, Ahu ;
El Assal, Rami ;
Chen, Pu ;
Guven, Sinan ;
Inci, Fatih ;
Demirci, Utkan .
BIOFABRICATION, 2016, 8 (01)
[4]   An injectable shear-thinning biomaterial for endovascular embolization [J].
Avery, Reginald K. ;
Albadawi, Hassan ;
Akbari, Mohsen ;
Zhang, Yu Shrike ;
Duggan, Michael J. ;
Sahani, Dushyant V. ;
Olsen, Bradley D. ;
Khademhosseini, Ali ;
Oklu, Rahmi .
SCIENCE TRANSLATIONAL MEDICINE, 2016, 8 (365)
[5]   Mechanical properties of bacterial cellulose and interactions with smooth muscle cells [J].
Bäckdahl, H ;
Helenius, G ;
Bodin, A ;
Nannmark, U ;
Johansson, BR ;
Risberg, B ;
Gatenholm, P .
BIOMATERIALS, 2006, 27 (09) :2141-2149
[6]   Microfluidic organs-on-chips [J].
Bhatia, Sangeeta N. ;
Ingber, Donald E. .
NATURE BIOTECHNOLOGY, 2014, 32 (08) :760-772
[7]   Three-Dimensional Objects Consisting of Hierarchically Assembled Nanofibers with Controlled Alignments for Regenerative Medicine [J].
Chen, Shixuan ;
Wang, Hongjun ;
McCarthy, Alec ;
Yang, Zheng ;
Kim, Hyung Joon ;
Carlson, Mark A. ;
Xia, Younan ;
Xie, Jingwei .
NANO LETTERS, 2019, 19 (03) :2059-2065
[8]   Fabrication of injectable and superelastic nanofiber rectangle matrices ("peanuts") and their potential applications in hemostasis [J].
Chen, Shixuan ;
Carlson, Mark A. ;
Zhang, Yu Shrike ;
Hu, Yong ;
Xie, Jingwei .
BIOMATERIALS, 2018, 179 :46-59
[9]   Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine [J].
Chen, Shixuan ;
Li, Ruiquan ;
Li, Xiaoran ;
Xie, Jingwei .
ADVANCED DRUG DELIVERY REVIEWS, 2018, 132 :188-213
[10]   Generation of Cost-Effective Paper-Based Tissue Models through Matrix-Assisted Sacrificial 3D Printing [J].
Cheng, Feng ;
Cao, Xia ;
Li, Hongbin ;
Liu, Tingting ;
Xie, Xin ;
Huang, Di ;
Maharjan, Sushila ;
Bei, Ho Pan ;
Gomez, Ameyalli ;
Li, Jun ;
Zhan, Haoqun ;
Shen, Haokai ;
Liu, Sanwei ;
He, Jinmei ;
Zhang, Yu Shrike .
NANO LETTERS, 2019, 19 (06) :3603-3611