UNIQUENESS OF POSITIVE BOUND STATES TO SCHRODINGER SYSTEMS WITH CRITICAL EXPONENTS

被引:99
作者
Li, Congming [1 ]
Ma, Li [2 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
moving plane; positive solutions; radial symmetric; uniqueness;
D O I
10.1137/080712301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the uniqueness of the positive solutions of the following elliptic system: (1) -Delta(u(x)) = u(x)(alpha)v(x)(beta), (2) -Delta(v(x)) = u(x)(beta)v(x)(alpha). Here x epsilon R-n, n >= 3, and 1 <= alpha < beta <= n+2/n-2 with alpha + beta = n+2/n-2. In the special case when n = 3 and alpha = 2, beta = 3, the system is closely related to the ones from the stationary Schrodinger system with critical exponents for the Bose-Einstein condensate. As the first step, we prove the radial symmetry of the positive solutions to the elliptic system above with critical exponents. We then prove that u = v, which is a key point for our uniqueness result.
引用
收藏
页码:1049 / 1057
页数:9
相关论文
共 28 条
[1]  
BOURGAIN J, 1999, AM MATH SOC C PUBL, V46
[2]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[3]  
Chen WX, 2008, P AM MATH SOC, V136, P955
[4]   CLASSIFICATION OF SOLUTIONS OF SOME NONLINEAR ELLIPTIC-EQUATIONS [J].
CHEN, WX ;
LI, CM .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (03) :615-622
[5]   Classification of solutions for an integral equation [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :330-343
[6]   Classification of solutions for a system of integral equations [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (1-3) :59-65
[7]  
Chen WX, 2005, COMMUN PUR APPL ANAL, V4, P1
[8]  
Chen WX, 2005, DISCRETE CONT DYN-A, V12, P347
[9]  
De Figueiredo D.G., 1994, Ann. Sc. Norm. Sup. Pisa, V21, P387
[10]  
DEFIGUEIREDO DG, 1994, T AM MATH SOC, V343, P99