Time-fractional approach to the electrochemical impedance: The Displacement current

被引:9
作者
Barbero, G. [1 ,2 ,5 ]
Evangelista, L. R. [1 ,3 ,5 ]
Lenzi, E. K. [4 ]
机构
[1] Politecn Torino, Dipartimento Sci Appl, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, Kashirskoye shosse 31, Moscow 115409, Russia
[3] Univ Estadual Maringa, Dept Fis, Ave Colombo 5790, BR-87020900 Maringa, Parana, Brazil
[4] Univ Estadual Ponta Grossa, Dept Fis, Ave Carlos Cavalcanti 4748, BR-87030900 Ponta Grossa, Parana, Brazil
[5] Ist Sistemi Complessi, Consiglio Nazl Ric, Via Taurini 19, I-00185 Rome, Italy
关键词
Fractional dynamics; PNP model; Displacement current; RANDOM-WALKS; STOCHASTIC TRANSPORT; DIFFUSION; MODEL; EQUATIONS; CONSTANT;
D O I
10.1016/j.jelechem.2022.116588
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We establish, in general terms, the conditions to be satisfied by a time-fractional approach formulation of the Poisson-Nernst-Planck model in order to guarantee that the total current across the sample be solenoidal, as required by the Maxwell equations. Only in this case the electric impedance of a cell can be determined as the ratio between the applied difference of potential and the current across the cell. We show that in the case of anomalous diffusion, the model predicts for the electric impedance of the cell a constant phase element behaviour in the low frequency region. In the parametric curve of the reactance versus the resistance, the slope coincides with the order of the fractional time derivative.
引用
收藏
页数:8
相关论文
共 33 条
  • [1] From continuous time random walks to the fractional Fokker-Planck equation
    Barkai, E
    Metzler, R
    Klafter, J
    [J]. PHYSICAL REVIEW E, 2000, 61 (01) : 132 - 138
  • [2] Electrical impedance response of gamma irradiated gelatin based solid polymer electrolytes analyzed using a generalized calculus formalism
    Basu, Tania
    Giri, Abhra
    Tarafdar, Sujata
    Das, Shantanu
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2015, 755 : 52 - 62
  • [3] Morphology and Ion-Conductivity of Gelatin-LiCIO4 Films: Fractional Diffusion Analysis
    Basu, Tania
    Goswami, Minakshi Maitra
    Middya, T. R.
    Tarafdar, Sujata
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (36) : 11362 - 11369
  • [4] An Approach to Introducing Fractional Integro-Differentiation in Classical Electrodynamics
    Bogolyubov, A. N.
    Potapov, A. A.
    Rehviashvili, S. Sh.
    [J]. MOSCOW UNIVERSITY PHYSICS BULLETIN, 2009, 64 (04) : 365 - 368
  • [5] Brady J.F., 1988, Disorder and Mixing: Convection, Diffusion and Reaction in Random Materials and Processes, P107
  • [6] Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations
    Chechkin, AV
    Gorenflo, R
    Sokolov, IM
    [J]. PHYSICAL REVIEW E, 2002, 66 (04): : 7 - 046129
  • [7] Evangelista LR, 2018, FRACTIONAL DIFFUSION
  • [8] Analytical solution of the Poisson-Nernst-Planck equations in the linear regime at an applied dc-voltage
    Golovnev, Anatoly
    Trimper, Steffen
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (15)
  • [9] CPE analysis by local electrochemical impedance spectroscopy
    Jorcin, JB
    Orazem, ME
    Pébère, N
    Tribollet, B
    [J]. ELECTROCHIMICA ACTA, 2006, 51 (8-9) : 1473 - 1479
  • [10] Time-Fractional Phase Field Model of Electrochemical Impedance
    L'vov, Pavel E.
    Sibatov, Renat T.
    Yavtushenko, Igor O.
    Kitsyuk, Evgeny P.
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (04)