Spatially dependent regularization parameter selection in total generalized variation models for image restoration

被引:57
作者
Bredies, Kristian
Dong, Yiqiu [1 ]
Hintermueller, Michael [2 ,3 ,4 ]
机构
[1] Helmholtz Ctr Munich, Inst Biomath & Biometry, D-85764 Neuherberg, Germany
[2] Humboldt Univ, Dept Math, D-10099 Berlin, Germany
[3] Graz Univ, Inst Math & Sci Comp, START Project Interfaces & Free Boundaries, A-8010 Graz, Austria
[4] Graz Univ, Inst Math & Sci Comp, SFB Math Optimizat & Applicat Biomed Sci, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
spatially dependent regularization parameter; total generalized variation; hierarchical decomposition; image restoration; 68U10; 94A08;
D O I
10.1080/00207160.2012.700400
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the automated spatially dependent regularization parameter selection framework for multi-scale image restoration is applied to total generalized variation (TGV) of order 2. Well-posedness of the underlying continuous models is discussed and an algorithm for the numerical solution is developed. Experiments confirm that due to the spatially adapted regularization parameter, the method allows for a faithful and simultaneous recovery of fine structures and smooth regions in images. Moreover, because of the TGV regularization term, the adverse staircasing effect, which is a well-known drawback of the total variation regularization, is avoided.
引用
收藏
页码:109 / 123
页数:15
相关论文
共 20 条
[1]  
[Anonymous], 1977, NEW YORK
[2]   TV based image restoration with local constraints [J].
Bertalmio, M ;
Caselles, V ;
Rougé, B ;
Solé, A .
JOURNAL OF SCIENTIFIC COMPUTING, 2003, 19 (1-3) :95-122
[3]  
Blomgren P., 1997, P SPIE, V1997
[4]  
Bovik A.C., 2000, HDB IMAGE VIDEO PROC
[5]  
Bredies K., 2011, P SAMPTA 2011 9 INT
[6]   Total Generalized Variation [J].
Bredies, Kristian ;
Kunisch, Karl ;
Pock, Thomas .
SIAM JOURNAL ON IMAGING SCIENCES, 2010, 3 (03) :492-526
[7]   Image recovery via total variation minimization and related problems [J].
Chambolle, A ;
Lions, PL .
NUMERISCHE MATHEMATIK, 1997, 76 (02) :167-188
[8]   A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging [J].
Chambolle, Antonin ;
Pock, Thomas .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2011, 40 (01) :120-145
[9]   High-order total variation-based image restoration [J].
Chan, T ;
Marquina, A ;
Mulet, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (02) :503-516
[10]   Automated Regularization Parameter Selection in Multi-Scale Total Variation Models for Image Restoration [J].
Dong, Yiqiu ;
Hintermueller, Michael ;
Rincon-Camacho, M. Monserrat .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2011, 40 (01) :82-104