Real-time detection of fast and thermal neutrons in radiotherapy with CMOS sensors

被引:8
作者
Arbor, Nicolas [1 ,2 ]
Higueret, Stephane [1 ,2 ]
Elazhar, Halima [1 ,2 ]
Combe, Rodolphe [1 ,2 ]
Meyer, Philippe [3 ]
Dehaynin, Nicolas [3 ]
Taupin, Florence [4 ]
Husson, Daniel [1 ,2 ]
机构
[1] Univ Strasbourg, IPHC, 23 Rue Loess, F-67037 Strasbourg, France
[2] CNRS, UMR7178, F-67037 Strasbourg, France
[3] Paul Strauss Ctr, Dept Med Phys, Strasbourg, France
[4] Ctr Hosp Lyon Sud, Dept Med Phys, Pierre Benite, France
关键词
radiotherapy; neutrons; dosimetry; CMOS; Monte Carlo simulation; X-RAY-BEAMS; DOSE EQUIVALENTS; MONTE-CARLO; LINEAR ACCELERATORS; 2ND MALIGNANCIES; FIELD SIZE; 15; MV; RADIATION; SPECTRA; PHOTON;
D O I
10.1088/1361-6560/aa5bc9
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The peripheral dose distribution is a growing concern for the improvement of new external radiation modalities. Secondary particles, especially photoneutrons produced by the accelerator, irradiate the patient more than tens of centimeters away from the tumor volume. However the out-of-field dose is still not estimated accurately by the treatment planning softwares. This study demonstrates the possibility of using a specially designed CMOS sensor for fast and thermal neutron monitoring in radiotherapy. The 14 microns-thick sensitive layer and the integrated electronic chain of the CMOS are particularly suitable for real-time measurements in gamma/n mixed fields. An experimental field size dependency of the fast neutron production rate, supported by Monte Carlo simulations and CR-39 data, has been observed. This dependency points out the potential benefits of a real-time monitoring of fast and thermal neutron during beam intensity modulated radiation therapies.
引用
收藏
页码:1920 / 1934
页数:15
相关论文
共 59 条
[1]   Photoneutron yields from tungsten in the energy range of the giant dipole resonance [J].
Akkurt, I ;
Adler, JO ;
Annand, JRM ;
Fasolo, F ;
Hansen, K ;
Isaksson, L ;
Karlsson, M ;
Lilja, P ;
Lundin, M ;
Nilsson, B ;
Ongaro, C ;
Reiter, A ;
Rosner, G ;
Sandell, A ;
Schröder, B ;
Zanini, A .
PHYSICS IN MEDICINE AND BIOLOGY, 2003, 48 (20) :3345-3352
[2]   Photoneutron intensity variation with field size around radiotherapy linear accelerator 18-MeV X-ray beam [J].
Al-Ghamdi, H. ;
Fazal-ur-Rehman ;
Al-Jarallah, M. I. ;
Maalej, N. .
RADIATION MEASUREMENTS, 2008, 43 (SUPPL.1) :S495-S499
[3]   Experimental characterization of the neutron spectra generated by a high-energy clinical LINAC [J].
Amgarou, K. ;
Lacoste, V. ;
Martin, A. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 629 (01) :329-336
[4]  
[Anonymous], IAEA INT NUCL INF SY
[5]   Monte Carlo modeling of a 6 and 18 MV Varian Clinac medical accelerator for in-field and out-of-field dose calculations: development and validation [J].
Bednarz, Bryan ;
Xu, X. George .
PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (04) :N43-N57
[6]   Calibration of PADC-based neutron area dosemeters in the neutron field produced in the treatment room of a medical LINAC [J].
Bedogni, R. ;
Domingo, C. ;
Esposito, A. ;
Gentile, A. ;
Garcia-Fuste, M. J. ;
de-San-Pedro, M. ;
Tana, L. ;
d'Errico, F. ;
Ciolini, R. ;
Di Fulvio, A. .
RADIATION MEASUREMENTS, 2013, 50 :78-81
[7]   Investigating in-field and out-of-field neutron contamination in high-energy medical linear accelerators based on the treatment factors of field size, depth, beam modifiers, and beam type [J].
Biltekin, Fatih ;
Yeginer, Mete ;
Ozyigit, Gokhan .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2015, 31 (05) :517-523
[8]  
Brenner DJ, 2000, CANCER, V88, P398, DOI 10.1002/(SICI)1097-0142(20000115)88:2<398::AID-CNCR22>3.0.CO
[9]  
2-V
[10]  
Brettschneider D., 2014, 2014 19 IEEE NPSS RE, P1, DOI [DOI 10.1109/RTC.2014.7097545, 10.1109/RTC.2014.7097545]