MULTI-OBJECT TRACKING WITH TRACKED OBJECT BOUNDING BOX ASSOCIATION

被引:0
作者
Yang, Nanyang [1 ]
Wang, Yi [1 ]
Chau, Lap-Pui [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
来源
2021 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW) | 2021年
关键词
Multi-object tracking; joint detection and tracking; data association;
D O I
10.1109/ICMEW53276.2021.9455993
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The CenterTrack tracking algorithm achieves state-of-the-art tracking performance using a simple detection model and single-frame spatial offsets to localize objects and predict their associations in a single network. However, this joint detection and tracking method still suffers from high identity switches due to the inferior association method. To reduce the high number of identity switches and improve the tracking accuracy, in this paper, we propose to incorporate a simple tracked object bounding box and overlapping prediction based on the current frame onto the CenterTrack algorithm. Specifically, we propose an Intersection over Union (IOU) distance cost matrix in the association step instead of simple point displacement distance. We evaluate our proposed tracker on the mar17 test dataset, showing that our proposed method can reduce identity switches significantly by 22.6% and obtain a notable improvement of 1.5% in IDF1 compared to the original CenterTrack's under the same tracklet lifetime.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Multi-Object Tracking Algorithm of Fusing Trajectory Compensation
    Jin, Jianhai
    Wang, Liming
    You, Qi
    Sun, Jun
    MATHEMATICS, 2022, 10 (15)
  • [32] Review of Multi-Object Tracking Based on Deep Learning
    Li, Jiaxin
    Zhao, Lei
    Zheng, Zhaohuang
    Yong, Ting
    2022 ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING (CACML 2022), 2022, : 719 - 725
  • [33] MAT: Motion-aware multi-object tracking
    Han, Shoudong
    Huang, Piao
    Wang, Hongwei
    Yu, En
    Liu, Donghaisheng
    Pan, Xiaofeng
    NEUROCOMPUTING, 2022, 476 : 75 - 86
  • [34] Joint Detection and Association for End-to-End Multi-object Tracking
    Li, Ye
    Luo, Xiaoyu
    Shi, Junyu
    Wang, Xinzhong
    Yin, Guangqiang
    Wang, Zhiguo
    NEURAL PROCESSING LETTERS, 2023, 55 (09) : 11823 - 11844
  • [35] Multi-object tracking via deep feature fusion and association analysis
    Li, Hui
    Liu, Yapeng
    Liang, Xiaoguo
    Yuan, Yongfeng
    Cheng, Yuanzhi
    Zhang, Guanglei
    Tamura, Shinichi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 124
  • [36] Joint Detection and Association for End-to-End Multi-object Tracking
    Ye Li
    Xiaoyu Luo
    Junyu Shi
    Xinzhong Wang
    Guangqiang Yin
    Zhiguo Wang
    Neural Processing Letters, 2023, 55 : 11823 - 11844
  • [37] Multi-Object Tracking Based on Feature Fusion and Hierarchical Data Association
    Liu, Yan
    Qin, Pinle
    Zeng, Jianchao
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1742 - 1747
  • [38] ONLINE MULTI-OBJECT TRACKING BASED ON HIERARCHICAL ASSOCIATION AND SPARSE REPRESENTATION
    Lin, Zijian
    Zheng, Huicheng
    Ke, Bo
    Chen, Lvran
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 655 - 659
  • [39] Effective Multi-Object Tracking via Global Object Models and Object Constraint Learning
    Yoo, Yong-Sang
    Lee, Seong-Ho
    Bae, Seung-Hwan
    SENSORS, 2022, 22 (20)
  • [40] A fast multi-object tracking system using an object detector ensemble
    Cobos, Richard
    Hernandez, Jefferson
    Abad, Andres G.
    2019 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS IN COMPUTATIONAL INTELLIGENCE (COLCACI), 2019,