New geometric inference techniques for type-2 fuzzy sets

被引:49
作者
Coupland, Simon [1 ]
John, Robert I. [1 ]
机构
[1] De Montfort Univ, Ctr Computat Intelligence, Leicester LE1 9BH, Leics, England
关键词
type-2 fuzzy logic; computational geometry; join; meet; and; or; implication; surface clipping;
D O I
10.1016/j.ijar.2008.03.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents new techniques for performing logical operations on type-2 fuzzy sets. These techniques make significant use of geometric methods to give, for the first time, logic operators that can be implemented over continuous domains, thereby eliminating the need for discretisation. We give a full exposition of the geometric inference operations and consider computational speed and accuracy. We show this novel approach to be more accurate, although slightly slower than existing techniques. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:198 / 211
页数:14
相关论文
共 45 条
  • [1] [Anonymous], 2003, P UK WORKSH COMP INT
  • [2] [Anonymous], 2005, P UKCI 2005
  • [3] [Anonymous], P IEEE FUZZ C
  • [4] [Anonymous], J NONLINEAR STUD
  • [5] COUPLAND S, IEEE T FUZZ IN PRESS
  • [6] Coupland S., 1955, P RASC 2004 NOTT ENG, P3
  • [7] COUPLAND S, 2007, P FUZZ IEEE 2007 LON, P131
  • [8] Type-2 fuzzy sets: Geometric defuzzification and type-reduction
    Coupland, Simon
    [J]. 2007 IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTATIONAL INTELLIGENCE, VOLS 1 AND 2, 2007, : 622 - 629
  • [9] Geometric type-1 and type-2 fuzzy logic systems
    Coupland, Simon
    John, Robert I.
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (01) : 3 - 15
  • [10] Dubois D., 1980, FUZZY SET SYST