3D RECONSTRUCTION OF INTERVERTEBRAL DISCS FROM T1-WEIGHTED MAGNETIC RESONANCE IMAGES

被引:0
|
作者
Castro, I. [1 ,2 ]
Humbert, L. [1 ,2 ]
Whitmarsh, T. [1 ,2 ]
Lazary, A. [4 ]
Del Rio Barquero, L. M. [3 ]
Frangi, A. F. [1 ,2 ,5 ]
机构
[1] Univ Pompeu Fabra, Ctr Computat Imaging & Simulat Technol Biomed CIS, Barcelona, Spain
[2] Biomed Res Networking Ctr Bioengineering, Biomaterials & Nanomedicine CIBER BBN, Barcelona, Spain
[3] CETIR Ctr Med, Barcelona, Spain
[4] Natl Ctr Spinal Disorders NCSD, Budapest, Hungary
[5] Univ Sheffield, Dept Mech Engn, Sheffield, S Yorkshire, England
来源
2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2012年
关键词
Statistical model; 3D; Intervertebral disc degeneration; image segmentation; MRI; MODELS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low back pain is a current and increasing problem closely related to intervertebral disc degeneration, which is responsible for over 90% of spinal surgical procedures. In clinical routine, clinicians base their diagnosis of disc degeneration on 2D analysis of Magnetic Resonance (MR) images. In this work, an automatic 3D segmentation method, based on active shape models, is presented for both degenerated and normal intervertebral discs. A database of 25 intervertebral discs was used to semi-automatically build a shape statistical model and intensity models. Then, a 3D reconstruction was achieved by using those models to deform an initial shape. The method was evaluated using the 25 intervertebral discs and a leave-one-out cross validation, resulting in a mean shape accuracy of 1.6mm and a mean dice similarity index of 83.6%. This automatic and accurate 3D reconstruction method opens the way for an improved diagnosis of disc degeneration.
引用
收藏
页码:1695 / 1698
页数:4
相关论文
共 50 条
  • [41] Acute noncontrast T1-weighted magnetic resonance imaging predicts chronic radiofrequency ablation lesions
    Kholmovski, Eugene G.
    Silvernagel, Josh
    Angel, Nathan
    Vijayakumar, Sathya
    Thomas, Samuel
    Dosdall, Derek
    MacLeod, Rob
    Marrouche, Nassir F.
    Ranjan, Ravi
    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2018, 29 (11) : 1556 - 1562
  • [42] OPTIMAL CONCENTRATIONS OF GADOVIST IN T1-WEIGHTED MAGNETIC RESONANCE IMAGING: PHANTOM STUDY AND COMPUTER SIMULATION
    Hsiao, Chia-Chi
    Chen, Po-Chou
    Pan, Huay-Ben
    Jao, Jo-Chi
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2011, 23 (03): : 237 - 244
  • [43] T1-weighted and T2-weighted Subtraction MR Images for Glioma Visualization and Grading
    Goryawala, Mohammed
    Roy, Bhaswati
    Gupta, Rakesh K.
    Maudsley, Andrew A.
    JOURNAL OF NEUROIMAGING, 2021, 31 (01) : 124 - 131
  • [44] Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging
    Yang, Chang-Tong
    Hattiholi, Aishwarya
    Selvan, Subramanian Tamil
    Yan, Sean Xuexian
    Fang, Wei-Wei
    Chandrasekharan, Prashant
    Koteswaraiah, Podili
    Herold, Christian J.
    Gulyas, Balazs
    Aw, Swee Eng
    He, Tao
    Ng, David Chee Eng
    Padmanabhan, Parasuraman
    ACTA BIOMATERIALIA, 2020, 110 (110) : 15 - 36
  • [45] Assessment of intramyocardial hemorrhage by T1-weighted cardiovascular magnetic resonance in reperfused acute myocardial infarction
    Pedersen, Steen Fjord
    Thrysoe, Samuel A.
    Robich, Michael P.
    Paaske, William P.
    Ringgaard, Steffen
    Botker, Hans Erik
    Hansen, Esben S. S.
    Kim, Won Yong
    JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2012, 14
  • [46] Volumetric reconstruction from DICOM™ format in magnetic resonance imaging and 3D visualization
    Lopez Hernandez, Juan M.
    Velasquez Aguilar, J. Guadalupe
    Lara, Alvaro Zamudio
    MEP 2006: PROCEEDINGS OF MULTICONFERENCE ON ELECTRONICS AND PHOTONICS, 2006, : 163 - +
  • [47] Improved contrast for myeloma focal lesions with T2-weighted Dixon images compared to T1-weighted images
    Danner, A.
    Brumpt, E.
    Alilet, M.
    Tio, G.
    Omoumi, P.
    Aubry, S.
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2019, 100 (09) : 513 - 519
  • [48] Biodegradable and biocompatible exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging of tumors
    Lu, Xuanyi
    Zhou, Huimin
    Liang, Zhiyu
    Feng, Jie
    Lu, Yudie
    Huang, Lin
    Qiu, Xiaozhong
    Xu, Yikai
    Shen, Zheyu
    JOURNAL OF NANOBIOTECHNOLOGY, 2022, 20 (01)
  • [49] Histogram Analysis of T1-Weighted, T2-Weighted, and Postcontrast T1-Weighted Images in Primary CNS Lymphoma: Correlations with Histopathological Findings-a Preliminary Study
    Meyer, Hans-Jonas
    Schob, Stefan
    Muench, Benno
    Frydrychowicz, Clara
    Garnov, Nikita
    Quaeschling, Ulf
    Hoffmann, Karl-Titus
    Surov, Alexey
    MOLECULAR IMAGING AND BIOLOGY, 2018, 20 (02) : 318 - 323
  • [50] Brain Age Estimation From T1-Weighted Images Using Effective Local Features
    Fujimoto, Ryuichi
    Ito, Koichi
    Wu, Kai
    Sato, Kazunori
    Taki, Yasuyuki
    Fukuda, Hiroshi
    Aoki, Takafumi
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 3028 - 3031