3D RECONSTRUCTION OF INTERVERTEBRAL DISCS FROM T1-WEIGHTED MAGNETIC RESONANCE IMAGES

被引:0
|
作者
Castro, I. [1 ,2 ]
Humbert, L. [1 ,2 ]
Whitmarsh, T. [1 ,2 ]
Lazary, A. [4 ]
Del Rio Barquero, L. M. [3 ]
Frangi, A. F. [1 ,2 ,5 ]
机构
[1] Univ Pompeu Fabra, Ctr Computat Imaging & Simulat Technol Biomed CIS, Barcelona, Spain
[2] Biomed Res Networking Ctr Bioengineering, Biomaterials & Nanomedicine CIBER BBN, Barcelona, Spain
[3] CETIR Ctr Med, Barcelona, Spain
[4] Natl Ctr Spinal Disorders NCSD, Budapest, Hungary
[5] Univ Sheffield, Dept Mech Engn, Sheffield, S Yorkshire, England
来源
2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2012年
关键词
Statistical model; 3D; Intervertebral disc degeneration; image segmentation; MRI; MODELS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low back pain is a current and increasing problem closely related to intervertebral disc degeneration, which is responsible for over 90% of spinal surgical procedures. In clinical routine, clinicians base their diagnosis of disc degeneration on 2D analysis of Magnetic Resonance (MR) images. In this work, an automatic 3D segmentation method, based on active shape models, is presented for both degenerated and normal intervertebral discs. A database of 25 intervertebral discs was used to semi-automatically build a shape statistical model and intensity models. Then, a 3D reconstruction was achieved by using those models to deform an initial shape. The method was evaluated using the 25 intervertebral discs and a leave-one-out cross validation, resulting in a mean shape accuracy of 1.6mm and a mean dice similarity index of 83.6%. This automatic and accurate 3D reconstruction method opens the way for an improved diagnosis of disc degeneration.
引用
收藏
页码:1695 / 1698
页数:4
相关论文
共 50 条
  • [21] Automatic motion artefact detection in brain T1-weighted magnetic resonance images from a clinical data warehouse using synthetic data
    Loizillon, Sophie
    Bottani, Simona
    Maire, Aurelien
    Stroer, Sebastian
    Dormont, Didier
    Colliot, Olivier
    Burgos, Ninon
    MEDICAL IMAGE ANALYSIS, 2024, 93
  • [22] An Efficient Computer Aided Detection for 3D Neurostructural Reconstruction of Magnetic Resonance Images
    Mabrouk, Mai S.
    Marzouk, Samir Y.
    Afify, Heba M.
    2018 9TH CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE (CIBEC), 2018, : 21 - 24
  • [23] Automated histogram-based brain segmentation in T1-weighted three-dimensional magnetic resonance head images
    Shan, ZY
    Yue, GH
    Liu, JZ
    NEUROIMAGE, 2002, 17 (03) : 1587 - 1598
  • [24] 3D Segmentation of Perivascular Spaces on T1-Weighted 3 Tesla MR Images With a Convolutional Autoencoder and a U-Shaped Neural Network
    Boutinaud, Philippe
    Tsuchida, Ami
    Laurent, Alexandre
    Adonias, Filipa
    Hanifehlou, Zahra
    Nozais, Victor
    Verrecchia, Violaine
    Lampe, Leonie
    Zhang, Junyi
    Zhu, Yi-Cheng
    Tzourio, Christophe
    Mazoyer, Bernard
    Joliot, Marc
    FRONTIERS IN NEUROINFORMATICS, 2021, 15
  • [25] A benchmark for hypothalamus segmentation on T1-weighted MR images
    Rodrigues, Livia
    Ribeiro Rezende, Thiago Junqueira
    Wertheimer, Guilherme
    Santos, Yves
    Franca, Marcondes
    Rittner, Leticia
    NEUROIMAGE, 2022, 264
  • [26] 3D RECONSTRUCTION FROM MRI IMAGES
    Anderla, Andras
    Brkljac, Branko
    Stefanovic, Darko
    Krsmanovic, Cvijan
    Sladojevic, Srdan
    Culibrk, Dubravko
    METALURGIA INTERNATIONAL, 2013, 18 : 17 - 21
  • [27] Spatial Normalization and Regional Assessment of Cord Atrophy: Voxel-Based Analysis of Cervical Cord 3D T1-Weighted Images
    Valsasina, P.
    Horsfield, M. A.
    Rocca, M. A.
    Absinta, M.
    Comi, G.
    Filippi, M.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2012, 33 (11) : 2195 - 2200
  • [28] Model-based Deep Learning Reconstruction Using a Folded Image Training Strategy for Abdominal 3D T1-weighted Imaging
    Funayama, Satoshi
    Motosugi, Utaroh
    Ichikawa, Shintaro
    Morisaka, Hiroyuki
    Omiya, Yoshie
    Onishi, Hiroshi
    MAGNETIC RESONANCE IN MEDICAL SCIENCES, 2023, 22 (04) : 515 - 526
  • [29] Nanoparticle-Based Systems for T1-Weighted Magnetic Resonance Imaging Contrast Agents
    Zhu, Derong
    Liu, Fuyao
    Ma, Lina
    Liu, Dianjun
    Wang, Zhenxin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (05): : 10591 - 10607
  • [30] Spot Sign in Acute Intracerebral Hemorrhage in Dynamic T1-Weighted Magnetic Resonance Imaging
    Schindlbeck, Katharina A.
    Santaella, Anna
    Galinovic, Ivana
    Krause, Thomas
    Rocco, Andrea
    Nolte, Christian H.
    Villringer, Kersten
    Fiebach, Jochen B.
    STROKE, 2016, 47 (02) : 417 - 423