3D RECONSTRUCTION OF INTERVERTEBRAL DISCS FROM T1-WEIGHTED MAGNETIC RESONANCE IMAGES

被引:0
|
作者
Castro, I. [1 ,2 ]
Humbert, L. [1 ,2 ]
Whitmarsh, T. [1 ,2 ]
Lazary, A. [4 ]
Del Rio Barquero, L. M. [3 ]
Frangi, A. F. [1 ,2 ,5 ]
机构
[1] Univ Pompeu Fabra, Ctr Computat Imaging & Simulat Technol Biomed CIS, Barcelona, Spain
[2] Biomed Res Networking Ctr Bioengineering, Biomaterials & Nanomedicine CIBER BBN, Barcelona, Spain
[3] CETIR Ctr Med, Barcelona, Spain
[4] Natl Ctr Spinal Disorders NCSD, Budapest, Hungary
[5] Univ Sheffield, Dept Mech Engn, Sheffield, S Yorkshire, England
来源
2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2012年
关键词
Statistical model; 3D; Intervertebral disc degeneration; image segmentation; MRI; MODELS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low back pain is a current and increasing problem closely related to intervertebral disc degeneration, which is responsible for over 90% of spinal surgical procedures. In clinical routine, clinicians base their diagnosis of disc degeneration on 2D analysis of Magnetic Resonance (MR) images. In this work, an automatic 3D segmentation method, based on active shape models, is presented for both degenerated and normal intervertebral discs. A database of 25 intervertebral discs was used to semi-automatically build a shape statistical model and intensity models. Then, a 3D reconstruction was achieved by using those models to deform an initial shape. The method was evaluated using the 25 intervertebral discs and a leave-one-out cross validation, resulting in a mean shape accuracy of 1.6mm and a mean dice similarity index of 83.6%. This automatic and accurate 3D reconstruction method opens the way for an improved diagnosis of disc degeneration.
引用
收藏
页码:1695 / 1698
页数:4
相关论文
共 50 条
  • [1] 3D segmentation of annulus fibrosus and nucleus pulposus from T2-weighted magnetic resonance images
    Castro-Mateos, Isaac
    Pozo, Jose M.
    Eltes, Peter E.
    Del Rio, Luis
    Lazary, Aron
    Frangi, Alejandro F.
    PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (24) : 7847 - 7864
  • [2] Automated multi-atlas segmentation of gluteus maximus from Dixon and T1-weighted magnetic resonance images
    Belzunce, Martin A.
    Henckel, Johann
    Fotiadou, Anastasia
    Di Laura, Anna
    Hart, Alister
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2020, 33 (05) : 677 - 688
  • [3] Automated multi-atlas segmentation of gluteus maximus from Dixon and T1-weighted magnetic resonance images
    Martin A. Belzunce
    Johann Henckel
    Anastasia Fotiadou
    Anna Di Laura
    Alister Hart
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2020, 33 : 677 - 688
  • [4] Interest of 3D Fat-Saturated T1-Weighted Magnetic Resonance Imaging for the Assessment of Cervical Artery Dissection
    Bencheikh, Yasser
    Kulczycka, Pola
    Macri, Francesco
    Millon, Domitille
    Greffier, Joel
    Beregi, Jean Paul
    Larbi, Ahmed
    JOURNAL OF THE BELGIAN SOCIETY OF RADIOLOGY, 2016, 100 (01):
  • [5] Automatic geometry-based estimation of the locus coeruleus region on T1-weighted magnetic resonance images
    Aganj, Iman
    Mora, Jocelyn
    Fischl, Bruce
    Augustinack, Jean C.
    FRONTIERS IN NEUROSCIENCE, 2024, 18
  • [6] Automatic Brain Extraction for T1-Weighted Magnetic Resonance Images Using Region Growing
    Ho, Yu-Lung
    Lin, Wei-Yang
    Tsai, Chia-Ling
    Lee, Cheng-Chia
    Lin, Chih-Yang
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2016, : 250 - 253
  • [7] Optimizing 3D EPI for rapid T1-weighted imaging
    Norbeck, Ola
    Sprenger, Tim
    Avventi, Enrico
    Ryden, Henric
    Kits, Annika
    Berglund, Johan
    Skare, Stefan
    MAGNETIC RESONANCE IN MEDICINE, 2020, 84 (03) : 1441 - 1455
  • [8] Increased brain volumetric measurement precision from multi-site 3D T1-weighted 3 T magnetic resonance imaging by correcting geometric distortions
    Nanayakkara, Nuwan D.
    Arnott, Stephen R.
    Scott, Christopher J. M.
    Solovey, Igor
    Liang, Shuai
    Fonov, Vladimir S.
    Gee, Tom
    Broberg, Dana N.
    Haddad, Seyyed M. H.
    Ramirez, Joel
    Berezuk, Courtney
    Holmes, Melissa
    Adamo, Sabrina
    Ozzoude, Miracle
    Theyers, Athena
    Sujanthan, Sujeevini
    Zamyadi, Mojdeh
    Casaubon, Leanne
    Dowlatshahi, Dar
    Mandzia, Jennifer
    Sahlas, Demetrios
    Saposnik, Gustavo
    Hassan, Ayman
    Swartz, Richard H.
    Strother, Stephen C.
    Szilagyi, Gregory M.
    Black, Sandra E.
    Symons, Sean
    ONDRI Investigators, O. N. D. R. I.
    Bartha, Robert
    MAGNETIC RESONANCE IMAGING, 2022, 92 : 150 - 160
  • [9] Prediction of High-Grade Pediatric Meningiomas: Magnetic Resonance Imaging Features Based on T1-Weighted, T2-Weighted, and Contrast-Enhanced T1-Weighted Images
    Li, Hao
    Zhao, Meng
    Jiao, Yuming
    Ge, Peicong
    Li, Zhicen
    Ma, Ji
    Wang, Shuo
    Cao, Yong
    Zhao, Jizong
    WORLD NEUROSURGERY, 2016, 91 : 89 - 95
  • [10] Value of T1-weighted Magnetic Resonance Imaging in Cholesteatoma Detection
    Fukuda, Atsushi
    Morita, Shinya
    Harada, Taisuke
    Fujiwara, Keishi
    Hoshino, Kimiko
    Nakamaru, Yuji
    Homma, Akihiro
    OTOLOGY & NEUROTOLOGY, 2017, 38 (10) : 1440 - 1444