On control of the false discovery rate under no assumption of dependency

被引:26
作者
Guo, Wenge [1 ]
Rao, M. Bhaskara [2 ]
机构
[1] Natl Inst Environm Hlth Sci, Biostat Branch, Res Triangle Pk, NC 27709 USA
[2] Univ Cincinnati, Dept Environm Hlth, Cincinnati, OH 45267 USA
关键词
critical constants; false discovery rate; knapsack problem; multiple testing; positive regression dependence; p-value; step-up procedure; step-down procedure;
D O I
10.1016/j.jspi.2008.01.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Most false discovery rate (FDR) controlling procedures require certain assumptions on the joint distribution of p-values. Benjamini and Hochberg [1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57, 289-300] proposed a step-up procedure with critical constants alpha(i) = (i/m)alpha, 1 <= i <= m, for a given level 0 < alpha < 1 and showed that FDR <= (m(0)/m)alpha under the assumption of independence of p-values, where m is the total number of null hypotheses and m(0) the number of true null hypotheses. Benjamini and Yekutieli [2001. The control of the false discovery rate in multiple testing under dependency. Ann. Statist. 29, 1165-1188] showed that for the same procedure FDR <= (m(0)/m)alpha Sigma(m)(j=1) 1/j, whatever may be the joint distribution of p-values. In one of the results in this paper, we show that this upper bound for FDR cannot be improved in the sense that there exists a joint distribution of p-values for which the upper bound is attained. A major thrust of this paper is to work in the realm of step-down procedures without imposing any condition on the joint distribution of the underlying p-values. As a starting point, we give an explicit expression for FDR specially tailored for step-down procedures. Using the same critical constants as those of the Benjamini-Hochberg procedure, we present a new step-down procedure for which the upper bound for FDR is much lower than what is given by Benjamini and Yekutieli. The explicit expression given for FDR and some optimization techniques stemming from the knapsack problem are instrumental in getting the main result. We also present some general results on stepwise procedures built on non-decreasing sequences of critical constants. (C) 2008 Elsevier B.V. All fights reserved.
引用
收藏
页码:3176 / 3188
页数:13
相关论文
共 50 条
[21]   Comments on: Control of the false discovery rate under dependence using the bootstrap and subsampling [J].
Yekutieli D. .
TEST, 2008, 17 (3) :458-460
[22]   Comments on: Control of the false discovery rate under dependence using the bootstrap and subsampling [J].
Wenge Guo .
TEST, 2008, 17 :446-449
[23]   The control of the false discovery rate in fixed sequence multiple testing [J].
Lynch, Gavin ;
Guo, Wenge ;
Sarkar, Sanat K. ;
Finner, Helmut .
ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02) :4649-4673
[24]   Restoring coverage to the Bayesian false discovery rate control procedure [J].
David L. Gold .
Knowledge and Information Systems, 2012, 33 :401-417
[25]   A general interactive framework for false discovery rate control under structural constraints [J].
Lei, Lihua ;
Ramdas, Aaditya ;
Fithian, William .
BIOMETRIKA, 2021, 108 (02) :253-267
[26]   An adaptive null proportion estimator for false discovery rate control [J].
Gao, Zijun .
BIOMETRIKA, 2024, 112 (01)
[27]   Restoring coverage to the Bayesian false discovery rate control procedure [J].
Gold, David L. .
KNOWLEDGE AND INFORMATION SYSTEMS, 2012, 33 (02) :401-417
[28]   Multivariate Process Control Chart for Controlling the False Discovery Rate [J].
Park, Jang-Ho ;
Jun, Chi-Hyuck .
INDUSTRIAL ENGINEERING AND MANAGEMENT SYSTEMS, 2012, 11 (04) :385-389
[29]   Nonparametric false discovery rate control for identifying simultaneous signals [J].
Zhao, Sihai Dave ;
Nguyen, Yet Tien .
ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01) :110-142
[30]   Exceedance control of the false discovery proportion [J].
Genovese, Christopher R. ;
Wasserman, Larry .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (476) :1408-1417