Nonlinear damped wave equation: Existence and blow-up

被引:77
作者
Messaoudi, Salim A. [1 ]
Talahmeh, Ala A. [1 ]
Al-Smail, Jamal H. [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, POB 546, Dhahran 31261, Saudi Arabia
关键词
Nonlinear damping; Blow up; Existence; Variable nonlinearity; GLOBAL NONEXISTENCE THEOREMS; VARIABLE EXPONENT; EVOLUTION-EQUATIONS; PARABOLIC EQUATIONS; SOBOLEV EMBEDDINGS; SPACES;
D O I
10.1016/j.camwa.2017.07.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following nonlinear wave equation with variable exponents: u(tt) - Delta u + au(t)vertical bar u(t)vertical bar(m(.)-2) = bu vertical bar u vertical bar(p(.)-2), where a, b are positive constants. By using the Faedo-Galerkin method, the existence of a unique weak solution is established under suitable assumptions on the variable exponents m and p. We also prove the finite time blow-up of solutions and give a two-dimension numerical example to illustrate the blow up result. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3024 / 3041
页数:18
相关论文
共 31 条
  • [1] New diffusion models in image processing
    Aboulaich, R.
    Meskine, D.
    Souissi, A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) : 874 - 882
  • [2] Blow-up of solutions to parabolic equations with nonstandard growth conditions
    Antontsev, S.
    Shmarev, S.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (09) : 2633 - 2645
  • [3] Antontsev S., 2015, EVOLUTION PDES NONST, V4
  • [4] ANTONTSEV S, 2011, J DIFFER EQU APPL, V3, P503
  • [5] Antontsev S, 2006, HBK DIFF EQUAT STATI, V3, P1, DOI 10.1016/S1874-5733(06)80005-7
  • [6] Antontsev S, 2005, ADV DIFFERENTIAL EQU, V10, P1053
  • [7] Global Nonexistence for Nonlinear Kirchhoff Systems
    Autuori, Giuseppina
    Pucci, Patrizia
    Salvatori, Maria Cesarina
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (02) : 489 - 516
  • [9] Variable exponent, linear growth functionals in image restoration
    Chen, Yunmei
    Levine, Stacey
    Rao, Murali
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) : 1383 - 1406
  • [10] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    [J]. LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +