Real Lagrangians in Calabi-Yau threefolds

被引:5
作者
Arguz, Hulya [1 ]
Prince, Thomas [2 ]
机构
[1] Univ Versailles St Quentin En Yvelines, Lab Math Versailles, 45 Ave Etats Unis, F-78035 Versailles, France
[2] Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
基金
欧洲研究理事会;
关键词
14D06; 14J33; 53D12; 14P25; 14Q15 (primary); AFFINE GEOMETRY; MIRROR SYMMETRY; COHOMOLOGY; DUALITY;
D O I
10.1112/plms.12324
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the mod 2 cohomology groups of real Lagrangians in torus fibrations on Calabi-Yau threefolds constructed by Gross. To do this we study a long exact sequence introduced by Castano-Bernard-Matessi, which relates the cohomology of the Lagrangians to the cohomology of the Calabi-Yau. We show that the connecting homomorphism in this sequence is given by the map squaring divisor classes in the mirror Calabi-Yau.
引用
收藏
页码:287 / 311
页数:25
相关论文
共 55 条
[1]  
[Anonymous], 2006, THESIS
[2]  
[Anonymous], 1994, J. Alg. Geom.
[3]  
Arguz H., 2016, ARXIV161007195V2MATH
[4]  
Arguz H., 2020, ARXIV200203957
[5]  
Aspinwall P.S., 2009, CLAY MATH MONOGRAPHS, V4
[6]  
Atiyah M. F., 1965, LECT NOTES
[7]   HOLONOMY OF FLAT AFFINELY CONNECTED MANIFOLDS [J].
AUSLANDER, L ;
MARKUS, L .
ANNALS OF MATHEMATICS, 1955, 62 (01) :139-151
[8]  
AUSLANDER L, 1964, TOPOLOGY, V3, P131, DOI DOI 10.1016/0040-9383(64)90012-6
[9]  
Batyrev VV, 1996, HIGHER DIMENSIONAL COMPLEX VARIETIES, P39
[10]   Mirror duality and string-theoretic Hodge numbers [J].
Batyrev, VV ;
Borisov, LA .
INVENTIONES MATHEMATICAE, 1996, 126 (01) :183-203