ON THE GLOBAL BEHAVIOR OF INVERSE MAPPINGS IN TERMS OF PRIME ENDS

被引:6
作者
Ilkevych, Nataliya [1 ]
Sevost'yanov, Evgeny [1 ,2 ]
Skvortsov, Sergei [1 ]
机构
[1] Zhytomyr Ivan Franko State Univ, 40 Bolshaya Berdichevskaya Str, UA-10008 Zhytomyr, Ukraine
[2] NAS Ukraine, Inst Appl Math & Mech, 1 Dobrovolskogo Str, UA-84100 Slavyansk, Ukraine
来源
ANNALES FENNICI MATHEMATICI | 2021年 / 46卷 / 01期
关键词
Mappings with a finite and bounded distortion; boundary behaviour; prime ends;
D O I
10.5186/aasfm.2021.4630
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is devoted to the study of mappings with finite distortion, actively studied recently. For mappings whose inverse satisfy the Poletsky inequality, the results on boundary behavior in terms of prime ends are obtained. In particular, it was proved that the families of the indicated mappings are equicontinuous at the points of the boundary if a certain function determining the distortion of the modulus of families of paths under the mappings is integrable.
引用
收藏
页码:371 / 388
页数:18
相关论文
共 19 条
  • [1] Rectifiable sets in metric and Banach spaces
    Ambrosio, L
    Kirchheim, B
    [J]. MATHEMATISCHE ANNALEN, 2000, 318 (03) : 527 - 555
  • [2] Intrinsic regular hypersurfaces in Heisenberg groups
    Ambrosio, Luigi
    Cassano, Francesco Serra
    Vittone, Davide
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2006, 16 (02) : 187 - 232
  • [3] Antonelli G, 2020, Arxiv, DOI arXiv:2005.11390
  • [4] Intrinsic regular submanifolds in Heisenberg groups are differentiable graphs
    Arena, Gabriella
    Serapioni, Raul
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 35 (04) : 517 - 536
  • [5] Cassano FS, 2016, EMS SER LECT MATH, P1
  • [6] INTRINSIC LIPSCHITZ GRAPHS AND VERTICAL β-NUMBERS IN THE HEISENBERG GROUP
    Chousionis, Vasileios
    Fassler, Katrin
    Orponen, Tuomas
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2019, 141 (04) : 1087 - 1147
  • [7] Corwin L. J., 1990, CAMBRIDGE STUD ADV M, V18
  • [8] Federer H., 1969, Grundlehren Math. Wiss., V153
  • [9] Franchi B., 2003, J. Geom. Anal., V13, P421
  • [10] Franchi B, 2006, J NONLINEAR CONVEX A, V7, P423