Existence results for mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions

被引:0
作者
Ahmad, Bashir [1 ]
Ntouyas, Sotiris K. [1 ,2 ]
Tariboon, Jessada [3 ,4 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[2] Univ Ioannina, Dept Math, Ioannina 45110, Greece
[3] King Mongkuts Univ Technol North Bangkok, Fac Sci Appl, Dept Math, Nonlinear Dynam Anal Res Ctr, Bangkok 10800, Thailand
[4] CHE, Ctr Excellence Math, Sri Ayutthaya Rd, Bangkok 10400, Thailand
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2016年 / 9卷 / 12期
关键词
Fractional differential inclusions; Hadamard derivative; Riemann-Liouville derivative; fixed point theorem; DIFFERENTIAL-INCLUSIONS; CHAOTIC SYSTEMS; ORDER SYSTEMS; SYNCHRONIZATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a new class of mixed initial value problems of Hadamard and Riemann-Liouville fractional integro-differential inclusions. The existence of solutions for convex valued (the upper semicontinuous) case is established by means of Krasnoselskii's fixed point theorem for multivalued maps and nonlinear alternative criterion, while the existence result for non-convex valued maps (the Lipschitz case) relies on a fixed point theorem due to Covitz and Nadler. Illustrative examples are also included. (C) 2016 all rights reserved.
引用
收藏
页码:6333 / 6347
页数:15
相关论文
共 43 条