Influence of removing PMMA residues on surface of CVD graphene using a contact-mode atomic force microscope

被引:79
作者
Choi, Woosuk [1 ]
Shehzad, Muhammad Arslan [1 ]
Park, Sanghoon [1 ]
Seo, Yongho [1 ]
机构
[1] Sejong Univ, Graphene Res Inst, Dept Nanotechnol, Adv Mat Engn, Seoul 143747, South Korea
基金
新加坡国家研究基金会;
关键词
CHEMICAL-VAPOR-DEPOSITION; FIELD-EFFECT TRANSISTORS; DEFECTS; DEVICES; FILMS; SIO2;
D O I
10.1039/c6ra27436f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For device fabrication based on 2D materials such as graphene, hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDs), polymethyl methacrylate (PMMA) is conventionally used in the wet transfer and lithography processes. All these processes are sources of polymer residue, which degrade the intrinsic electrical and optical properties of devices. In this work, we report the effect of mechanical cleaning via contact mode atomic force microscopy (AFM) on the surface morphology and electrical behavior of chemical-vapor-deposition grown graphene. An AFM tip with large contact force was used to scan, and multiple scanning was performed to remove the residues of PMMA. Raman mapping was incorporated to confirm the cleaning effect using AFM. Transconductance properties associated with a field-effecttransistor device based on the cleaned graphene were analyzed. It was observed that charge-neutrality point was shifted towards zero gate voltage and the charge carrier mobility was increased. We claim that our technique provides a facile route to fabricate devices with less polymer residue and higher efficiency.
引用
收藏
页码:6943 / 6949
页数:7
相关论文
共 38 条
[1]   The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties [J].
Ambrosi, Adriano ;
Pumera, Martin .
NANOSCALE, 2014, 6 (01) :472-476
[2]   Anisotropic thermoelectric behavior in armchair and zigzag mono- and fewlayer MoS2 in thermoelectric generator applications [J].
Arab, Abbas ;
Li, Qiliang .
SCIENTIFIC REPORTS, 2015, 5
[3]   Toward Wafer Scale Fabrication of Graphene Based Spin Valve Devices [J].
Avsar, Ahmet ;
Yang, Tsung-Yeh ;
Bae, Sukang ;
Balakrishnan, Jayakumar ;
Volmer, Frank ;
Jaiswal, Manu ;
Yi, Zheng ;
Ali, Syed Rizwan ;
Guentherodt, Gernot ;
Hong, Byung Hee ;
Beschoten, Bernd ;
Oezyilmaz, Barbaros .
NANO LETTERS, 2011, 11 (06) :2363-2368
[4]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[5]   Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating [J].
Buscema, Michele ;
Groenendijk, Dirk J. ;
Steele, Gary A. ;
van der Zant, Herre S. J. ;
Castellanos-Gomez, Andres .
NATURE COMMUNICATIONS, 2014, 5
[6]   Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies [J].
Cancado, L. G. ;
Jorio, A. ;
Martins Ferreira, E. H. ;
Stavale, F. ;
Achete, C. A. ;
Capaz, R. B. ;
Moutinho, M. V. O. ;
Lombardo, A. ;
Kulmala, T. S. ;
Ferrari, A. C. .
NANO LETTERS, 2011, 11 (08) :3190-3196
[7]   Printed graphene circuits [J].
Chen, Jian-Hao ;
Ishigami, Masa ;
Jang, Chaun ;
Hines, Daniel R. ;
Fuhrer, Michael S. ;
Williams, Ellen D. .
ADVANCED MATERIALS, 2007, 19 (21) :3623-3627
[8]   High-quality sandwiched black phosphorus heterostructure and its quantum oscillations [J].
Chen, Xiaolong ;
Wu, Yingying ;
Wu, Zefei ;
Han, Yu ;
Xu, Shuigang ;
Wang, Lin ;
Ye, Weiguang ;
Han, Tianyi ;
He, Yuheng ;
Cai, Yuan ;
Wang, Ning .
NATURE COMMUNICATIONS, 2015, 6
[9]   Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO2-Supported Graphene Devices [J].
Cheng, Zengguang ;
Zhou, Qiaoyu ;
Wang, Chenxuan ;
Li, Qiang ;
Wang, Chen ;
Fang, Ying .
NANO LETTERS, 2011, 11 (02) :767-771
[10]   A Simple Method for Cleaning Graphene Surfaces with an Electrostatic Force [J].
Choi, Won Jin ;
Chung, Yoon Jang ;
Park, Serin ;
Yang, Cheol-Soo ;
Lee, Young Kuk ;
An, Ki-Seok ;
Lee, You-Seop ;
Lee, Jeong-O .
ADVANCED MATERIALS, 2014, 26 (04) :637-644