Lacunarity and period-doubling

被引:2
作者
Glendinning, Paul [1 ,2 ]
Smith, Leonard A. [3 ]
机构
[1] Univ Manchester, Ctr Interdisciplinary Computat & Dynam Anal CICAD, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
[3] Univ London London Sch Econ & Polit Sci, CATS, London WC2A 2AE, England
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2013年 / 28卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
lacunarity; fractal; period-doubling; universality class; STRANGE ATTRACTORS; INTERMITTENCY; DIMENSION;
D O I
10.1080/14689367.2012.755496
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the deviation from power laws of the scaling of chaotic measures, such as Lyapunov exponents and topological entropy, is periodic in the logarithm of the distance from the accumulation of period doubling. Moreover, this periodic function is asymptotically universal for each measure (for functions in the appropriate universality class). This is related to the concept of lacunarity known to exist for scaling functions describing the mass distribution of self-similar fractal sets.
引用
收藏
页码:111 / 121
页数:11
相关论文
共 24 条
[1]  
[Anonymous], DYNAMICS ONE DIMENSI
[2]   HAUSDORFF DIMENSION AND UNIFORMITY FACTOR OF STRANGE ATTRACTORS [J].
BADII, R ;
POLITI, A .
PHYSICAL REVIEW LETTERS, 1984, 52 (19) :1661-1664
[3]   UNIVERSAL PROPERTIES OF MAPS ON AN INTERVAL [J].
COLLET, P ;
ECKMANN, JP ;
LANFORD, OE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 76 (03) :211-254
[4]  
Collet P., 1980, Iterated Maps on the Interval as Dynamical Systems
[5]  
Coullet P, 1978, J PHYS, V9
[6]  
De Bruijn N G, 1948, P K NED AKAD WETENSC, V51, P659
[7]  
deMelo W., 1993, One-Dimensional Dynamics, V25
[8]   SOME CHARACTERIZATIONS OF STRANGE SETS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1987, 46 (5-6) :919-924
[9]   PRESENTATION FUNCTIONS, FIXED-POINTS, AND A THEORY OF SCALING FUNCTION DYNAMICS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (3-4) :527-569
[10]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52