Lacunarity and period-doubling

被引:2
|
作者
Glendinning, Paul [1 ,2 ]
Smith, Leonard A. [3 ]
机构
[1] Univ Manchester, Ctr Interdisciplinary Computat & Dynam Anal CICAD, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
[3] Univ London London Sch Econ & Polit Sci, CATS, London WC2A 2AE, England
来源
基金
英国工程与自然科学研究理事会;
关键词
lacunarity; fractal; period-doubling; universality class; STRANGE ATTRACTORS; INTERMITTENCY; DIMENSION;
D O I
10.1080/14689367.2012.755496
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the deviation from power laws of the scaling of chaotic measures, such as Lyapunov exponents and topological entropy, is periodic in the logarithm of the distance from the accumulation of period doubling. Moreover, this periodic function is asymptotically universal for each measure (for functions in the appropriate universality class). This is related to the concept of lacunarity known to exist for scaling functions describing the mass distribution of self-similar fractal sets.
引用
收藏
页码:111 / 121
页数:11
相关论文
共 50 条
  • [1] The Spectrum of Period-Doubling Hamiltonian
    Liu, Qinghui
    Qu, Yanhui
    Yao, Xiao
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 394 (03) : 1039 - 1100
  • [2] Property of period-doubling bifurcations
    Wang, LQ
    Xu, MT
    CHAOS SOLITONS & FRACTALS, 2005, 24 (02) : 527 - 532
  • [3] Alternating period-doubling cascades
    Aston, Philip J.
    Bristow, Neil
    NONLINEARITY, 2013, 26 (09) : 2553 - 2576
  • [4] PERIOD-DOUBLING IN COUPLED MAPS
    KIM, SY
    KOOK, HT
    PHYSICAL REVIEW E, 1993, 48 (02) : 785 - 799
  • [5] The Spectrum of Period-Doubling Hamiltonian
    Qinghui Liu
    Yanhui Qu
    Xiao Yao
    Communications in Mathematical Physics, 2022, 394 : 1039 - 1100
  • [6] Period-doubling cascades galore
    Sander, Evelyn
    Yorke, James A.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2011, 31 : 1249 - 1267
  • [7] A UNIVERSALITY OF PERIOD-DOUBLING BIFURCATIONS
    ARIMITSU, T
    MOTOIKE, T
    PHYSICA D, 1995, 84 (1-2): : 290 - 302
  • [8] Local symmetries in the period-doubling sequence
    Damanik, D
    DISCRETE APPLIED MATHEMATICS, 2000, 100 (1-2) : 115 - 121
  • [9] PERIODIC PERTURBATION ON A PERIOD-DOUBLING SYSTEM
    HORNER, H
    PHYSICAL REVIEW A, 1983, 27 (02): : 1270 - 1271
  • [10] INFLUENCE OF PERTURBATIONS ON PERIOD-DOUBLING BIFURCATION
    SVENSMARK, H
    SAMUELSEN, MR
    PHYSICAL REVIEW A, 1987, 36 (05): : 2413 - 2417