A priori error estimates for a linearized fracture control problem

被引:8
作者
Mohammadi, Masoumeh [1 ]
Wollner, Winnifried [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64283 Darmstadt, Germany
关键词
Optimal control; Linearized fracture model; Finite element method; A priori error estimate; FINITE-ELEMENT APPROXIMATION; PHASE-FIELD MODELS; BRITTLE-FRACTURE; CONVERGENCE; ORDER;
D O I
10.1007/s11081-020-09574-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A control problem for a linearized time-discrete regularized fracture propagation process is considered. The discretization of the problem is done using a conforming finite element method. In contrast to many works on discretization of PDE constrained optimization problems, the particular setting has to cope with the fact that the linearized fracture equation is not necessarily coercive. A quasi-best approximation result will be shown in the case of an invertible, though not necessarily coercive, linearized fracture equation. Based on this a priori error estimates for the control, state, and adjoint variables will be derived.
引用
收藏
页码:2127 / 2149
页数:23
相关论文
共 35 条
[1]   A review on phase-field models of brittle fracture and a new fast hybrid formulation [J].
Ambati, Marreddy ;
Gerasimov, Tymofiy ;
De Lorenzis, Laura .
COMPUTATIONAL MECHANICS, 2015, 55 (02) :383-405
[2]   APPROXIMATION OF FUNCTIONALS DEPENDING ON JUMPS BY ELLIPTIC FUNCTIONALS VIA GAMMA-CONVERGENCE [J].
AMBROSIO, L ;
TORTORELLI, VM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) :999-1036
[3]   Error estimates for the numerical approximation of a semilinear elliptic control problem [J].
Arada, N ;
Casas, E ;
Tröltzsch, F .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 23 (02) :201-229
[4]   The deal. II library, version 8.5 [J].
Arndt, Daniel ;
Bangerth, Wolfgang ;
Davydov, Denis ;
Heister, Timo ;
Heltai, Luca ;
Kronbichler, Martin ;
Maier, Matthias ;
Pelteret, Jean-Paul ;
Turcksin, Bruno ;
Wells, David .
JOURNAL OF NUMERICAL MATHEMATICS, 2017, 25 (03) :137-145
[5]   deal. II - A general-purpose object-oriented finite element library [J].
Bangerth, W. ;
Hartmann, R. ;
Kanschat, G. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (04)
[6]  
Bartels S, 2018, SPRINGER INDAM SER, V27, P179, DOI 10.1007/978-3-319-75940-1_9
[7]   The variational approach to fracture [J].
Bourdin, Blaise ;
Francfort, Gilles A. ;
Marigo, Jean-Jacques .
JOURNAL OF ELASTICITY, 2008, 91 (1-3) :5-148
[8]  
Brenner S.C., 2008, Texts in Applied Mathematics, V15, DOI DOI 10.1007/978-0-387-75934-0
[9]   AN ADAPTIVE FINITE ELEMENT APPROXIMATION OF A GENERALIZED AMBROSIO-TORTORELLI FUNCTIONAL [J].
Burke, Siobhan ;
Ortner, Christoph ;
Sueli, Endre .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (09) :1663-1697
[10]   AN ADAPTIVE FINITE ELEMENT APPROXIMATION OF A VARIATIONAL MODEL OF BRITTLE FRACTURE [J].
Burke, Siobhan ;
Ortner, Christoph ;
Sueli, Endre .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (03) :980-1012