Physiological responses of wheat (Triticum aestivum L.) germination to elevated ammonium concentrations: reserve mobilization, sugar utilization, and antioxidant metabolism

被引:14
|
作者
Liu, Yang [1 ]
Sun, Jianyun [2 ]
Tian, Zhongwei [1 ]
Hakeem, Abdul [1 ]
Wang, Feng [1 ]
Jiang, Dong [1 ]
Cao, Weixing [1 ]
Adkins, Steve William [3 ]
Dai, Tingbo [1 ]
机构
[1] Nanjing Agr Univ, Coll Agr, Key Lab Crop Physiol & Ecol Southern China, 1 Weigang Rd, Nanjing 210095, Jiangsu, Peoples R China
[2] Nanjing Agr Univ, Coll Life Sci, Cooperat & Demonstrat Lab Element & Life Sci Res, Nanjing 210095, Jiangsu, Peoples R China
[3] Univ Queensland, Sch Agr & Food Sci, Gatton, Qld 4343, Australia
基金
中国国家自然科学基金;
关键词
Ammonium; Antioxidant; Germination; Reserve mobilization; Sugar utilization; Wheat; ROOT-GROWTH INHIBITION; GLUTAMATE-DEHYDROGENASE; ABSCISIC-ACID; NITROGEN; ARABIDOPSIS; NUTRITION; NITRATE; NH4+; RICE; TOLERANCE;
D O I
10.1007/s10725-016-0198-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To elucidate the physiological mechanisms of wheat (Triticum aestivum L.) germination in response to elevated ammonium (NH4 (+)) concentrations (EAC), Yumai49 (NH4 (+)-tolerant) and Lumai15 (NH4 (+)-sensitive) cultivars were supplied with a 5.0 mM NH4 (+)-N (EAC) treatment or a 5.0 mM NO3 (-)-N (CON) treatment as the control. There was a reduction in the seed germination index, plant biomass, radicle length, and other deleterious effects following the EAC treatment in both cultivars, but Yumai49 was more tolerant to EAC than Lumai15. When compared to CON, alpha-amylase activity and ATP content in seeds were significantly lower after the 3rd and 5th day of the EAC treatment in Lumai15 and Yumai49, respectively. Moreover, the ratio of abscisic acid to gibberellins in seeds was higher under EAC treatment as compared to CON, with a smaller ratio increase in Yumai49 than in Lumai15, indicating that the differences in hormone ratio caused by the EAC treatment was associated with lower seed reserve mobilization. The soluble sugar content in radicles increased while it was reduced in coleoptiles for both cultivars under the EAC treatment. However, Yumai49 exhibited a slight increase in seedling soluble sugar content, while Lumai15 exhibited a significant reduction in sugar content, as compared to CON. Moreover, Yumai49 exhibited a lower ratio reduction in coleoptile to radicle soluble sugar content as compared with Lumai15, indicating that Yumai49 was undergoing greater reserve mobilization and transportation to the radicle to support growth. The activities of pyruvate kinase and phosphoenolpyruvate carboxylase were increased under the EAC treatment in the radicles, with a greater increase seen in Yumai49 than in Lumai15, indicating that Yumai49 had a greater capacity to assimilate NH4 (+). In addition, the EAC treatment enhanced the content of malonaldehyde and superoxide anions, and the activities of superoxide dismutase and peroxidase in the coleoptiles and radicles of both cultivars, with the magnitude of these increases greater in Yumai49 than in Lumai15. It is concluded that the NH4 (+)-tolerant cultivar, as compared to the sensitive cultivar, has a greater capacity to undertake reserve mobilization and ATP production in its seeds, a greater sugar utilization in its radicles, and a stronger antioxidant protection mechanism.
引用
收藏
页码:209 / 220
页数:12
相关论文
共 50 条
  • [21] Physiological responses, ion accumulation and yield performance of wheat (Triticum aestivum L.) to salt stress
    Rahman, Atikur
    Ahmed, Sujat
    Islam, Moshiul
    Shathy, Laila Parveen
    Urmi, Tahmina Akter
    Haque, M. Moynul
    Siddiqui, Manzer H.
    Murata, Yoshiyuki
    SOUTH AFRICAN JOURNAL OF BOTANY, 2024, 168 : 417 - 429
  • [22] Antioxidant status and physiological responses of wheat (Triticum aestivum L.) to cycocel application and bio fertilizers under water limitation condition
    Khalilzadeh, Razieh
    Sharifi, Raouf Seyed
    Jalilian, Jalal
    JOURNAL OF PLANT INTERACTIONS, 2016, 11 (01) : 130 - 137
  • [23] Fructan Metabolism in Developing Wheat (Triticum aestivum L.) Kernels
    Verspreet, Joran
    Cimini, Sara
    Vergauwen, Rudy
    Dornez, Emmie
    Locato, Vittoria
    Le Roy, Katrien
    De Gara, Laura
    Van den Ende, Wim
    Delcour, Jan A.
    Courtin, Christophe M.
    PLANT AND CELL PHYSIOLOGY, 2013, 54 (12) : 2047 - 2057
  • [24] PHYSIOLOGICAL AND BIOCHEMICAL EFFECTS OF AG NANOPARTICLES ON WHEAT (TRITICUM AESTIVUM L.)
    Jiang, Fuping
    Pan, Juejun
    Zhu, Siyuan
    Rui, Mengmeng
    Song, Youhong
    Mao, Chuanxin
    Guo, Jing
    Rui, Yukui
    Cao, Weidong
    Liu, Liming
    FRESENIUS ENVIRONMENTAL BULLETIN, 2017, 26 (1A): : 1084 - 1090
  • [25] EVALUATION OF SOME PHYSIOLOGICAL PARAMETERS IN BREAD WHEAT (TRITICUM AESTIVUM L.)
    Ardic, Murat
    PAKISTAN JOURNAL OF BOTANY, 2022, 54 (04) : 1255 - 1264
  • [26] PHYSIOLOGICAL CHARACTERIZATION OF WHEAT (Triticum aestivum L.) GENOTYPES UNDER SALINITY
    Atiq-ur-Rahman, Muhammad
    Saqib, Muhammad
    Akhtar, Javaid
    Ahmad, Rashid
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2014, 51 (04): : 983 - 990
  • [27] Selenium biological effects on antioxidant substrate in wheat (Triticum aestivum L.)
    Dadnia, Mohammad Reza
    Ghanbarpoor, Maryam
    RESEARCH ON CROPS, 2010, 11 (02) : 252 - 255
  • [28] Physiological and Ultrastructural Effects of Cadmium on Wheat (Triticum aestivum L.) Leaves
    G. Ouzounidou
    M. Moustakas
    E. P. Eleftheriou
    Archives of Environmental Contamination and Toxicology, 1997, 32 : 154 - 160
  • [29] Physiological and Ultrastructural Effects of Cadmium on Wheat (Triticum aestivum L.) Leaves
    Ouzounidou, G.
    Moustakas, M.
    Eleftheriou, E. P.
    Archives of Environmental Contamination and Toxicology, 32 (02):
  • [30] Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth
    Lamhamdi, Mostafa
    Bakrim, Ahmed
    Aarab, Ahmed
    Lafont, Rene
    Sayah, Fouad
    COMPTES RENDUS BIOLOGIES, 2011, 334 (02) : 118 - 126