Yolk-shell carbon microspheres with controlled yolk and void volumes and shell thickness and their application as a cathode material for Li-S batteries

被引:52
作者
Hong, Young Jun [1 ]
Lee, Jung-Kul [2 ]
Kang, Yun Chan [1 ]
机构
[1] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
[2] Konkuk Univ, Dept Chem Engn, 1 Hwayang Dong, Seoul 143701, South Korea
基金
新加坡国家研究基金会;
关键词
ULTRASONIC SPRAY-PYROLYSIS; LITHIUM-SULFUR BATTERIES; POROUS CARBON; FACILE SYNTHESIS; SURFACE-AREA; SPHERES; NANOSPHERES; NANOSHEETS; NANOTUBES; NANOSTRUCTURES;
D O I
10.1039/c6ta08328e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon yolk-shell microspheres are ideal sulfur host materials for Li-S batteries because they can accommodate the volume expansion of sulfur during charge-discharge cycles. In this study, yolk-shell structured carbon microspheres are prepared by spray pyrolysis, and their formation mechanism is investigated. SnO2/carbon-carbon core-shell microspheres, prepared by one-step spray pyrolysis using a solution containing tin(II) oxalate, polyvinylpyrrolidone (PVP), and sucrose, are used as precursor microspheres; the shell and core are formed from PVP and sucrose, respectively. Carbon yolk-shell microspheres with a carbon-void-carbon configuration are prepared by the elimination of SnO2 using Se under a reducing atmosphere. The carbon yolk-shell microspheres prepared from the solution containing sucrose have more filled yolk than the microspheres prepared from the solution without sucrose. The first discharge and charge capacities of the sulfur infiltrated carbon yolk-shell microspheres with a filled yolk at a current density of 0.1 A g (-1) are 1503 and 1368 mA h g (-1), respectively. The discharge capacity of the microspheres after the 150th cycle at a current density of 0.5 A g (-1) is 602 mA h g (- 1). The microspheres have high reversible discharge capacities of 817, 735, 626, 513, and 340 mA h g (-1) at the current densities of 0.5, 1, 2, 4, and 10 A g (-1), respectively. The sulfur-infiltrated carbon yolkshell microspheres with the filled yolk show superior rate performance compared to the hollow microspheres with negligible yolk.
引用
收藏
页码:988 / 995
页数:8
相关论文
共 47 条
[1]   Porous carbon supports prepared by ultrasonic spray pyrolysis for direct methanol fuel cell electrodes [J].
Bang, Jin Ho ;
Han, Kookil ;
Skrabalak, Sara E. ;
Kim, Hasuck ;
Suslick, Kenneth S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (29) :10959-10964
[2]   Carbon Materials for Lithium Sulfur Batteries-Ten Critical Questions [J].
Borchardt, Lars ;
Oschatz, Martin ;
Kaskel, Stefan .
CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (22) :7324-7351
[3]   Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium-sulfur batteries with long cycle life [J].
Chen, Shuangqiang ;
Sun, Bing ;
Xie, Xiuqiang ;
Mondal, Anjon Kumar ;
Huang, Xiaodan ;
Wang, Guoxiu .
NANO ENERGY, 2015, 16 :268-280
[4]   Multi-shelled hollow carbon nanospheres for lithium-sulfur batteries with superior performances [J].
Chen, Shuangqiang ;
Huang, Xiaodan ;
Sun, Bing ;
Zhang, Jinqiang ;
Liu, Hao ;
Wang, Guoxiu .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (38) :16199-16207
[5]   Enhanced Cyclability for Sulfur Cathode Achieved by a Water-Soluble Binder [J].
He, Min ;
Yuan, Li-Xia ;
Zhang, Wu-Xing ;
Hu, Xian-Luo ;
Huang, Yun-Hui .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (31) :15703-15709
[6]   One-Pot Facile Synthesis of Double-Shelled SnO2 Yolk-Shell-Structured Powders by Continuous Process as Anode Materials for Li-ion Batteries [J].
Hong, Young Jun ;
Son, Mun Yeong ;
Kang, Yun Chan .
ADVANCED MATERIALS, 2013, 25 (16) :2279-2283
[7]   Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries [J].
Huang, Jia-Qi ;
Zhang, Qiang ;
Peng, Hong-Jie ;
Liu, Xin-Yan ;
Qian, Wei-Zhong ;
Wei, Fei .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :347-353
[8]  
Jiao Y, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.130, 10.1038/nenergy.2016.130]
[9]   Hierarchical Porous Carbon by Ultrasonic Spray Pyrolysis Yields Stable Cycling in Lithium-Sulfur Battery [J].
Jung, Dae Soo ;
Hwang, Tae Hoon ;
Lee, Ji Hoon ;
Koo, Hye Young ;
Shakoor, Rana A. ;
Kahraman, Ramazan ;
Jo, Yong Nam ;
Park, Min-Sik ;
Choi, Jang Wook .
NANO LETTERS, 2014, 14 (08) :4418-4425
[10]   Carbon Nanotubes: From Nano Test Tube to Nano-Reactor [J].
Khlobystov, Andrei N. .
ACS NANO, 2011, 5 (12) :9306-9312