Discrete instability in nonlinear lattices

被引:30
作者
Leon, J [1 ]
Manna, M [1 ]
机构
[1] Univ Montpellier 2, CNRS, UMR 5825, F-34095 Montpellier, France
关键词
D O I
10.1103/PhysRevLett.83.2324
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The discrete multiscale analysis for boundary value problems in nonlinear discrete systems leads to a first order, strictly discrete, modulational instability (disappearing in the continuous envelope limit) above a threshold amplitude for wave numbers beyond the zero of group velocity dispersion. Applied to the electrical lattice [Phys. Rev. E 51, 6127 (1995)], this accurately explains the experimental instability at wave numbers beyond 1.25 rad cell(-1). The theory is also briefly discussed for the sine-Gordon and Toda lattices.
引用
收藏
页码:2324 / 2327
页数:4
相关论文
共 22 条
[1]   MODULATION INSTABILITY AND PERIODIC-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
KORNEEV, VI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) :1089-1093
[2]  
[Anonymous], 1974, PROG THEOR PHYS SUPP
[3]   Breathers in nonlinear lattices: Existence, linear stability and quantization [J].
Aubry, S .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 103 (1-4) :201-250
[4]  
BARTHES M, 1990, NONLINEAR COHERENT S
[6]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[7]  
BESPALOV VI, 1966, JETP LETT-USSR, V3, P307
[8]   Discrete breathers [J].
Flach, S ;
Willis, CR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 295 (05) :181-264
[9]   KINK, BREATHER AND ASYMMETRIC ENVELOPE OR DARK SOLITONS IN NONLINEAR CHAINS .1. MONATOMIC CHAIN [J].
FLYTZANIS, N ;
PNEVMATIKOS, S ;
REMOISSENET, M .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (24) :4603-4629
[10]  
HASEGAWA A, 1974, APPL PHYS LETT, V23, P284