KALMAN FILTER-BASED IDENTIFICATION OF UNKNOWN EXOGENOUS INPUT OF STOCHASTIC LINEAR SYSTEMS VIA PSEUDOMEASUREMENT APPROACH

被引:0
|
作者
Ohsumi, Akira [1 ]
Kimura, Takuro [2 ]
Kono, Michio [2 ]
机构
[1] Miyazaki Univ, Grad Sch Engn, Miyazaki 8892192, Japan
[2] Miyazaki Univ, Interdisciplinary Grad Sch Agr & Engn, Miyazaki 8892192, Japan
来源
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL | 2009年 / 5卷 / 01期
关键词
Identification; Exogenous input; Pseudomeasurement; Kalman filter; TARGET TRACKING;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper a new approach to identify the unknown parameter of stepwise or impulsive exogenous input to the linear system front the noisy observation data is proposed. The key of the approach is to introduce an additional information about the unknown parameter vector which is called the pseudomeasurement. Augmenting this pseudomeasurement with the original observation data, the identification of unknown. vector as well as the state estimation is performed. The efficacy of the proposed approach is confirmed by simulation studies.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [41] A multi-Kalman filter-based approach for decoding arm kinematics from EMG recordings
    ElMohandes, Hend
    Eldawlatly, Seif
    Audi, Josep Marcel Cardona
    Ruff, Roman
    Hoffmann, Klaus-Peter
    BIOMEDICAL ENGINEERING ONLINE, 2022, 21 (01)
  • [42] Kalman filter-based tracking of moving objects using linear ultrasonic sensor array for road vehicles
    Li, Shengbo Eben
    Li, Guofa
    Yu, Jiaying
    Liu, Chang
    Cheng, Bo
    Wang, Jianqiang
    Li, Keqiang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 98 : 173 - 189
  • [43] Contrast enhancement and tissues classification of breast MRI using Kalman filter-based linear mixing method
    Yang, Sheng-Chih
    Wang, Chuin-Mu
    Hsu, Hsian-He
    Chung, Pau-Choo
    Hsu, Giu-Cheng
    Juan, Chun-Jung
    Lo, Chien-Shun
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2009, 33 (03) : 187 - 196
  • [44] Sparse Bayesian Learning Kalman Filter-based Channel Estimation for Hybrid Millimeter Wave MIMO Systems: A Frequency Domain Approach
    Ali, K. Shoukath
    Sampath, P.
    IETE JOURNAL OF RESEARCH, 2023, 69 (07) : 4243 - 4253
  • [45] Vehicle Sideslip Angle estimation under critical road conditions via nonlinear Kalman filter-based state-dependent Interacting Multiple Model approach
    Tufano, Francesco
    Lui, Dario Giuseppe
    Battistini, Simone
    Brancati, Renato
    Lenzo, Basilio
    Santini, Stefania
    CONTROL ENGINEERING PRACTICE, 2024, 146
  • [46] Modal analysis of an operational offshore wind turbine using enhanced Kalman filter-based subspace identification
    van Vondelen, Aemilius A. W.
    Iliopoulos, Alexandros
    Navalkar, Sachin T.
    van der Hoek, Daan C.
    van Wingerden, Jan-Willem
    WIND ENERGY, 2023, 26 (09) : 923 - 945
  • [47] KALMAN FILTER BASED SYSTEM IDENTIFICATION EXPLOITING THE DECORRELATION EFFECTS OF LINEAR PREDICTION
    Kuehl, Stefan
    Antweiler, Christiane
    Huebschen, Tobias
    Jax, Peter
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4790 - 4794
  • [48] DeepLPC: A Deep Learning Approach to Augmented Kalman Filter-Based Single-Channel Speech Enhancement
    Roy, Sujan Kumar
    Nicolson, Aaron
    Paliwal, Kuldip K.
    IEEE ACCESS, 2021, 9 : 64524 - 64538
  • [49] Estimation of Torque Variation due to Torsional Vibration in a Rotating System Using a Kalman Filter-Based Approach
    Satyajit Mahapatra
    Akash Shrivastava
    Biswajit Sahoo
    Amiya Ranjan Mohanty
    Journal of Vibration Engineering & Technologies, 2023, 11 : 1939 - 1950
  • [50] Single-trial dynamical estimation of event-related potentials: A Kalman filter-based approach
    Georgiadis, SD
    Ranta-aho, PO
    Tarvainen, MR
    Karjalainen, PA
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2005, 52 (08) : 1397 - 1406