There are no universal ternary quadratic forms over biquadratic fields

被引:13
作者
Krasensky, Jakub [1 ]
Tinkova, Magdalena [1 ]
Zemkova, Kristyna [2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Sokolovska 83, Prague 18600 8, Czech Republic
[2] Tech Univ Dortmund, Fak Math, D-44221 Dortmund, Germany
关键词
Indecomposable integer; universal quadratic form; ternary quadratic form; biquadratic number field; TOTALLY POSITIVE NUMBERS; INTEGERS; RANK;
D O I
10.1017/S001309152000022X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study totally positive definite quadratic forms over the ring of integers O-K of a totally real biquadratic field K = Q(root m, root s). We restrict our attention to classic forms (i.e. those with all nondiagonal coefficients in 2O(K)) and prove that no such forms in three variables are universal (i.e. represent all totally positive elements of O-K). Moreover, we show the same result for totally real number fields containing at least one non-square totally positive unit and satisfying some other mild conditions. These results provide further evidence towards Kitaoka's conjecture that there are only finitely many number fields over which such forms exist. One of our main tools are additively indecomposable elements of O-K; we prove several new results about their properties.
引用
收藏
页码:861 / 912
页数:52
相关论文
共 29 条
[1]  
Bhargava M., INVENT MATH
[2]  
Blomer V, 2018, DOC MATH, V23, P15
[3]   Number fields without n-ary universal quadratic forms [J].
Blomer, Valentin ;
Kala, Vitezslav .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2015, 159 (02) :239-252
[5]   Universal quadratic forms and indecomposables over biquadratic fields [J].
Cech, Martin ;
Lachman, Dominik ;
Svoboda, Josef ;
Tinkova, Magdalena ;
Zemkova, Kristysma .
MATHEMATISCHE NACHRICHTEN, 2019, 292 (03) :540-555
[6]  
Chan W.K., 1996, JAPANESE J MATH, V22, P263
[7]   Universality of a non-classical integral quadratic form over Q(√5) [J].
Deutsch, Jesse Ira .
ACTA ARITHMETICA, 2009, 136 (03) :229-242
[8]   INDECOMPOSABLE TOTALLY POSITIVE NUMBERS IN REAL QUADRATIC ORDERS [J].
DRESS, A ;
SCHARLAU, R .
JOURNAL OF NUMBER THEORY, 1982, 14 (03) :292-306
[9]   Universal positive quaternary quadratic lattices over totally real number fields [J].
Earnest, AG ;
Khosravani, A .
MATHEMATIKA, 1997, 44 (88) :342-347
[10]  
HSIA JS, 1978, J REINE ANGEW MATH, V301, P132