COMPLETE AND COMPLETE MOMENT CONVERGENCE FOR WEIGHTED SUMS OF (ρ)over-tilde-MIXING RANDOM VARIABLES

被引:2
作者
Feng, Fengxiang [1 ,2 ]
Wang, Dingcheng [2 ]
Wu, Qunying [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] Guilin Univ Technol, Coll Sci, Guilin 541004, Guangxi, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2018年 / 12卷 / 01期
基金
中国国家自然科学基金;
关键词
Complete convergence; complete moment convergence; weighted sums; (rho)over-tilde-mixing random variables; DEPENDENT RANDOM-VARIABLES; SEQUENCES;
D O I
10.7153/jmi-2018-12-16
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish complete convergence results and a complete moment convergence result and prove the equivalence of them for weighted sums of (rho) over tilde -mixing random variables. Our results generalize and improve the results of Baum and Katz(1965) and Peligrad and Gut (1999). As an application, we obtain the Marcinkiewicz- Zygmund type strong law of large numbers for weighted sums of (rho) over tilde -mixing random variables.
引用
收藏
页码:201 / 217
页数:17
相关论文
共 17 条
[1]  
[Anonymous], 2008, STAT PROBABIL LETT
[2]  
BAI ZD, 1985, SCI SIN A-MATH P A T, V28, P1261
[3]   CONVERGENCE RATES IN LAW OF LARGE NUMBERS [J].
BAUM, LE ;
KATZ, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 120 (01) :108-&
[4]  
Bradley R.C., 1992, J THEOR PROBAB, V5, P355, DOI [10.1007/BF01046741, DOI 10.1007/BF01046741]
[5]   MOMENT CONDITIONS FOR ALMOST SURE CONVERGENCE OF WEAKLY CORRELATED RANDOM-VARIABLES [J].
BRYC, W ;
SMOLENSKI, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (02) :629-635
[6]   Almost sure convergence for (p)over-tilde-mixing random variable sequences [J].
Gan, SX .
STATISTICS & PROBABILITY LETTERS, 2004, 67 (04) :289-298
[7]   On complete convergence for arrays of rowwise dependent random variables [J].
Kuczmaszewska, Anna .
STATISTICS & PROBABILITY LETTERS, 2007, 77 (11) :1050-1060
[8]   On chung-teicher type strong law of large numbers for ρ*-mixing random variables [J].
Kuczmaszewska, Anna .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2008, 2008
[9]   Almost-sure results for a class of dependent random variables [J].
Peligrad, M ;
Gut, A .
JOURNAL OF THEORETICAL PROBABILITY, 1999, 12 (01) :87-104
[10]   Strong convergence for sequences of asymptotically almost negatively associated random variables [J].
Shen, Aiting ;
Wu, Ranchao .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2014, 86 (02) :291-303