Shock structures and bunching fronts in excitable reaction-diffusion systems

被引:15
作者
Hamik, CT [1 ]
Steinbock, O [1 ]
机构
[1] Florida State Univ, Dept Biochem & Chem, Tallahassee, FL 32306 USA
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 04期
关键词
D O I
10.1103/PhysRevE.65.046224
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report experimental results on the dynamics of excitation waves in a modified Belousov-Zhabotinsky reaction. The waves in this system obey nonmonotonic dispersion relations. This anomaly induces the stacking of excitation fronts into patterns with stable interpulse distances. The stacking process creates either a traveling shock structure or a cascade of bunching events in which metastable wave packets are formed. The direction and the speed of the shock are explained in terms of a simple geometrical analysis. We also present experimental evidence for the corresponding instabilities in two-dimensional systems. Here, wave stacking generates atypical structures in the collision of target patterns and wave bunching is accompanied by complex front deformations.
引用
收藏
页码:7 / 046224
页数:7
相关论文
共 50 条
  • [31] Speed of fronts of the reaction-diffusion equation
    Benguria, RD
    Depassier, MC
    PHYSICAL REVIEW LETTERS, 1996, 77 (06) : 1171 - 1173
  • [32] INSTABILITIES IN PROPAGATING REACTION-DIFFUSION FRONTS
    HORVATH, D
    PETROV, V
    SCOTT, SK
    SHOWALTER, K
    JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (08) : 6332 - 6343
  • [33] Oscillating localized structures in reaction-diffusion systems
    Descalzi, O
    Hayase, Y
    Brand, HR
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (12): : 4097 - 4104
  • [34] Pulse dynamics in an excitable reaction-diffusion system
    Ohta, T
    Ito, T
    MACROMOLECULAR SYMPOSIA, 2000, 160 : 15 - 19
  • [35] BISTABLE REACTION-DIFFUSION EQUATIONS AND EXCITABLE MEDIA
    GARTNER, J
    MATHEMATISCHE NACHRICHTEN, 1983, 112 : 125 - 152
  • [36] Existence, uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems
    WANG ZhiCheng
    LI WanTong
    RUAN ShiGui
    Science China(Mathematics), 2016, 59 (10) : 1869 - 1908
  • [37] Variety of running fronts in one-variable reaction-diffusion systems
    Leda, M
    Kawczynski, AL
    SIMPLICITY BEHIND COMPLEXITY, 2004, 3 : 458 - 463
  • [38] Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications
    Shuxia Pan
    Wan-Tong Li
    Guo Lin
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 377 - 392
  • [39] Existence, uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems
    Wang, ZhiCheng
    Li, WanTong
    Ruan, ShiGui
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (10) : 1869 - 1908
  • [40] Existence, uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems
    ZhiCheng Wang
    WanTong Li
    ShiGui Ruan
    Science China Mathematics, 2016, 59 : 1869 - 1908