The spin Hall effect in a quantum gas

被引:177
作者
Beeler, M. C. [1 ,2 ]
Williams, R. A. [1 ,2 ]
Jimenez-Garcia, K. [1 ,2 ,3 ]
LeBlanc, L. J. [1 ,2 ]
Perry, A. R. [1 ,2 ]
Spielman, I. B. [1 ,2 ]
机构
[1] NIST, Joint Quantum Inst, Gaithersburg, MD 20899 USA
[2] Univ Maryland, Gaithersburg, MD 20899 USA
[3] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Mexico City 07360, DF, Mexico
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
NEUTRAL ATOMS;
D O I
10.1038/nature12185
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electronic properties such as current flow are generally independent of the electron's spin angular momentum, an internal degree of freedom possessed by quantum particles. The spin Hall effect, first proposed 40 years ago(1), is an unusual class of phenomena in which flowing particles experience orthogonally directed, spin-dependent forces-analogous to the conventional Lorentz force that gives the Hall effect, but opposite in sign for two spin states. Spin Hall effects have been observed for electrons flowing in spin-orbit-coupled materials such as GaAs and InGaAs (refs 2, 3) and for laser light traversing dielectric junctions(4). Here we observe the spin Hall effect in a quantum-degenerate Bose gas, and use the resulting spin-dependent Lorentz forces to realize a cold-atom spin transistor. By engineering a spatially inhomogeneous spin-orbit coupling field for our quantum gas, we explicitly introduce and measure the requisite spin-dependent Lorentz forces, finding them to be in excellent agreement with our calculations. This 'atomtronic' transistor behaves as a type of velocity-insensitive adiabatic spin selector, with potential application in devices such as magnetic(5) or inertial(6) sensors. In addition, such techniques for creating and measuring the spin Hall effect are clear prerequisites for engineering topological insulators(7,8) and detecting their associated quantized spin Hall effects in quantum gases. As implemented, our system realizes a laser-actuated analogue to the archetypal semiconductor spintronic device, the Datta-Das spin transistor(9,10).
引用
收藏
页码:201 / +
页数:6
相关论文
共 40 条
[1]   Interferometry with synthetic gauge fields [J].
Anderson, Brandon M. ;
Taylor, Jacob M. ;
Galitski, Victor M. .
PHYSICAL REVIEW A, 2011, 83 (03)
[2]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[3]   OSCILLATORY EFFECTS AND THE MAGNETIC-SUSCEPTIBILITY OF CARRIERS IN INVERSION-LAYERS [J].
BYCHKOV, YA ;
RASHBA, EI .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (33) :6039-6045
[4]   Spin-Injection Spectroscopy of a Spin-Orbit Coupled Fermi Gas [J].
Cheuk, Lawrence W. ;
Sommer, Ariel T. ;
Hadzibabic, Zoran ;
Yefsah, Tarik ;
Bakr, Waseem S. ;
Zwierlein, Martin W. .
PHYSICAL REVIEW LETTERS, 2012, 109 (09)
[5]   Colloquium: Artificial gauge potentials for neutral atoms [J].
Dalibard, Jean ;
Gerbier, Fabrice ;
Juzeliunas, Gediminas ;
Oehberg, Patrik .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04) :1523-1543
[6]   ELECTRONIC ANALOG OF THE ELECTROOPTIC MODULATOR [J].
DATTA, S ;
DAS, B .
APPLIED PHYSICS LETTERS, 1990, 56 (07) :665-667
[7]   SPIN-ORBIT COUPLING EFFECTS IN ZINC BLENDE STRUCTURES [J].
DRESSELHAUS, G .
PHYSICAL REVIEW, 1955, 100 (02) :580-586
[8]  
DYAKONOV MI, 1971, JETP LETT-USSR, V13, P467
[9]   Particles in non-Abelian gauge potentials: Landau problem and insertion of non-Abelian flux [J].
Estienne, B. ;
Haaker, S. M. ;
Schoutens, K. .
NEW JOURNAL OF PHYSICS, 2011, 13
[10]   Robust Digital Holography For Ultracold Atom Trapping [J].
Gaunt, Alexander L. ;
Hadzibabic, Zoran .
SCIENTIFIC REPORTS, 2012, 2