Pressure jump interface law for the Stokes-Darcy coupling: confirmation by direct numerical simulations

被引:42
作者
Carraro, T. [1 ]
Goll, C. [1 ]
Marciniak-Czochra, A. [1 ,2 ]
Mikelic, A. [3 ]
机构
[1] Heidelberg Univ, Inst Appl Math, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Bioquant, D-69120 Heidelberg, Germany
[3] Univ Lyon 1, CNRS UMR 5208, Inst Camille Jordan, F-69622 Villeurbanne, France
基金
欧洲研究理事会;
关键词
computational methods; Navier-Stokes equations; porous media; DIMENSIONAL POROUS-MEDIA; FINITE-ELEMENT METHODS; BOUNDARY-CONDITIONS; TRANSPORT PHENOMENA; HOMOGENEOUS FLUID; MOMENTUM-TRANSFER; MICROSCOPIC FLOW; UNCONFINED FLUID; SURFACE; HOMOGENIZATION;
D O I
10.1017/jfm.2013.416
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
It is generally accepted that the effective velocity of a viscous flow over a porous bed satisfies the Beavers-Joseph slip law. To the contrary, the interface law for the effective stress has been a subject of controversy. Recently, a pressure jump interface law has been rigourously derived by Marciniak-Czochra and Mikelic. In this paper, we provide a confirmation of the analytical result using direct numerical simulation of the flow at the microscopic level. To the best of the authors' knowledge, this is the first numerical confirmation of the pressure interface law in the literature.
引用
收藏
页码:510 / 536
页数:27
相关论文
共 31 条
[1]  
[Anonymous], 1995, PRINCIPLES HEAT TRAN
[2]  
[Anonymous], 2002, TEXTS APPL MATH
[3]   deal. II - A general-purpose object-oriented finite element library [J].
Bangerth, W. ;
Hartmann, R. ;
Kanschat, G. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (04)
[4]   BOUNDARY CONDITIONS AT A NATURALLY PERMEABLE WALL [J].
BEAVERS, GS ;
JOSEPH, DD .
JOURNAL OF FLUID MECHANICS, 1967, 30 :197-&
[5]  
Becker R, 2001, ACT NUMERIC, V10, P1, DOI 10.1017/S0962492901000010
[6]  
Beliaev AY, 1996, COMMUN PUR APPL MATH, V49, P1, DOI 10.1002/(SICI)1097-0312(199601)49:1<1::AID-CPA1>3.0.CO
[7]  
2-J
[8]   Solutions of 3D Navier-Stokes benchmark problems with adaptive finite elements [J].
Braack, M ;
Richter, T .
COMPUTERS & FLUIDS, 2006, 35 (04) :372-392
[9]  
Dagan G., 1981, WATER RESOUR RES, V15, P1
[10]  
ENE HI, 1975, J MECANIQUE, V14, P73