Limit Cycles Bifurcations for a Class of Kolmogorov Model in Symmetrical Vector Field

被引:13
作者
Du Chaoxiong [1 ]
Liu Yirong [2 ]
Huang Wentao [3 ]
机构
[1] Hunan Shaoyang Univ, Dept Math, Shaoyang 422000, Hunan, Peoples R China
[2] Cent South Univ, Sch Math, Changsha 410083, Hunan, Peoples R China
[3] Hezhou Univ, Dept Math, Hezhou 542800, Guangxi, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2014年 / 24卷 / 03期
基金
中国国家自然科学基金;
关键词
Kolmogorov model; positive equilibrium points; limit cycles; stable cycles; NUMBER;
D O I
10.1142/S0218127414500400
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of limit cycles for Kolmogorov model is interesting and significant both in theory and applications. Our work is concerned with limit cycles bifurcations problem for a class of quartic Kolmogorov model with two positive singular points (i.e. (1, 2) and (2, 1)). The investigated model is symmetrical with regard to y = x. We show that each one of points (1, 2) and (2, 1) can bifurcate five small limit cycles at the same step under a certain condition. Hence, the two positive singular points can bifurcate ten limit cycles in sum, in which six cycles can be stable. In terms of symmetrical Kolmogorov model, published references are less. In terms of the Hilbert Number of Kolmogorov model, our results are new.
引用
收藏
页数:8
相关论文
共 15 条
[1]  
Andronov A., 1973, Theory of Bifurcations of Dynamic Systems on a Plane
[2]  
[Anonymous], 2010, Qual. Theo. Dyna. Syst., DOI DOI 10.1007/S12346-010-0024-7)
[3]   Center, limit cycles and isochronous center of a Z 4-equivariant quintic system [J].
Du, Chao Xiong ;
Mi, Hei Long ;
Liu, Yi Rong .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (06) :1183-1196
[4]   Center-focus problem and limit cycles bifurcations for a class of cubic Kolmogorov model [J].
Du, Chaoxiong ;
Huang, Wentao .
NONLINEAR DYNAMICS, 2013, 72 (1-2) :197-206
[5]   The bifurcation of limit cycles in Zn-equivariant vector fields [J].
Du, Chaoxiong ;
Liu, Yirong ;
Chen, Haibo .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (05) :2041-2056
[6]  
[杜超雄 DU Chaoxiong], 2007, [工程数学学报, Chinese Journal of Engineering Mathematics], V24, P746
[7]   On the number of limit cycles of polynomial Lienard systems [J].
Han, Maoan ;
Romanovski, Valery G. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (03) :1655-1668
[8]   Lower bounds for the Hilbert number of polynomial systems [J].
Han, Maoan ;
Li, Jibin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (04) :3278-3304
[9]   Limit cycles in a general Kolmogorov model [J].
Huang, XC ;
Zhu, LM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (08) :1393-1414
[10]   Theory of center-focus for a class of higher-degree critical points and infinite points [J].
Liu, YR .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2001, 44 (03) :365-377