Exact solutions and conservation laws of a -dimensional B-type Kadomtsev-Petviashvili equation

被引:13
作者
Abudiab, Mufid [1 ]
Khalique, Chaudry Masood [2 ]
机构
[1] Texas A&M Univ Corpus Christi, Dept Math & Stat, Corpus Christi, TX 78412 USA
[2] North West Univ, Dept Math Sci, Int Inst Symmetry Anal & Math Modelling, ZA-2735 Mmabatho, South Africa
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2013年
关键词
(3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation; multiple-exp function method; simplest equation method; conservation laws; ELLIPTIC FUNCTION SOLUTIONS; WAVE SOLUTIONS;
D O I
10.1186/1687-1847-2013-221
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a -dimensional generalized B-type Kadomtsev-Petviashvili (BKP) equation. This equation is an extension of the well-known Kadomtsev-Petviashvili equation, which describes weakly dispersive and small amplitude waves propagating in quasi-two-dimensional media. We first obtain exact solutions of the BKP equation using the multiple-exp function and simplest equation methods. Furthermore, the conservation laws for the BKP equation are constructed by using the multiplier method.
引用
收藏
页数:7
相关论文
共 26 条
[1]  
Ablowitz M., 1991, Soliton, Nonlinear Evolution Equations and Inverse Scattering
[2]  
Adem AR, 2012, COMMUN NONLINEAR SCI, V17, P3465, DOI [10.1016/ja.cnsns.2012.01.010, 10.1016/j.cnsns.2012.01.010]
[3]   Exact Solutions and Conservation Laws of a (2+1)-Dimensional Nonlinear KP-BBM Equation [J].
Adem, Khadijo Rashid ;
Khalique, Chaudry Masood .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[4]   Direct construction method for conservation laws of partial differential equations - Part I: Examples of conservation law classifications [J].
Anco, SC ;
Bluman, G .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2002, 13 :545-566
[5]  
[Anonymous], 1993, GRADUATE TEXTS MATH
[6]   CONSERVATION LAWS AND INVARIANT SOLUTIONS IN THE FANNO MODEL FOR TURBULENT COMPRESSIBLE FLOW [J].
Anthonyrajah, M. ;
Mason, D. P. .
MATHEMATICAL & COMPUTATIONAL APPLICATIONS, 2010, 15 (04) :529-542
[7]  
Bluman G W., 1989, APPL MATH SCI, V81, pXIII
[8]  
Gu C.H., 1990, Soliton Theory and its Application
[9]   Exp-function method for nonlinear wave equations [J].
He, Ji-Huan ;
Wu, Xu-Hong .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :700-708
[10]  
Hirota R., 2004, The Direct Method in Soliton Theory