Multivariate image fusion: A pipeline for hyperspectral data enhancement

被引:7
作者
Fortuna, Joao [1 ,2 ]
Martens, Harald [1 ,3 ]
Johansen, Tor Arne [1 ,2 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Engn Cybernet, Trondheim, Norway
[2] Ctr Autonomous Marine Operat & Syst NTNU AMOS, Trondheim, Norway
[3] Idletechs AS, Trondheim, Norway
关键词
Hyperspectral; Data fusion; Pansharpening; Super resolution; SUPERRESOLUTION; DECOMPOSITION;
D O I
10.1016/j.chemolab.2020.104097
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hyperspectral cameras provide high spectral resolution data, but their usual low spatial resolution when compared to color (RGB) instruments is still a limitation for more detailed studies. This article presents a simple yet powerful method for fusing co-registered high spatial and low spectral resolution image data - e.g. RGB - with low spatial and high spectral resolution data - Hyperspectral. The proposed method exploits the overlap in observed phenomena by the two cameras to create a model through least square projections. This yields two images: 1) A high-resolution image spatially correlated with the input RGB image but with more spectral information than just the 3 RGB bands. 2) A low-resolution image showing the spectral information what is spatially uncorrelated with the RGB image. We show results for semi-artificial benchmark datasets and a real-world application. Performance metrics indicate the method is well suited for data enhancement.
引用
收藏
页数:14
相关论文
共 56 条
[1]  
Akhtar N, 2015, PROC CVPR IEEE, P3631, DOI 10.1109/CVPR.2015.7298986
[2]   Sparse Spatio-spectral Representation for Hyperspectral Image Super-resolution [J].
Akhtar, Naveed ;
Shafait, Faisal ;
Mian, Ajmal .
COMPUTER VISION - ECCV 2014, PT VII, 2014, 8695 :63-78
[3]  
[Anonymous], 2017, WEIGHTED LOW RANK TE
[4]  
[Anonymous], 2018, IEEE T NEUR NET LEAR, DOI DOI 10.1109/TNNLS.2018.2798162
[5]  
[Anonymous], 2015, OPEN REMOTE SENSING
[6]   Application of chemometric methods to the analysis of multimodal chemical images of biological tissues [J].
Bedia, Carmen ;
Sierra, Angels ;
Tauler, Roma .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2020, 412 (21) :5179-5190
[7]   Blind image fusion for hyperspectral imaging with the directional total variation [J].
Bungert, Leon ;
Coomes, David A. ;
Ehrhardt, Matthias J. ;
Rasch, Jennifer ;
Reisenhofer, Rafael ;
Schonlieb, Carola-Bibiane .
INVERSE PROBLEMS, 2018, 34 (04)
[8]   HSI-DeNet: Hyperspectral Image Restoration via Convolutional Neural Network [J].
Chang, Yi ;
Yan, Luxin ;
Fang, Houzhang ;
Zhong, Sheng ;
Liao, Wenshan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (02) :667-682
[9]  
Dagostino Sr R.B., 2014, WILEY STATSREF STAT
[10]   Multivariate curve resolution (MCR) from 2000: Progress in concepts and applications [J].
de Juan, Anna ;
Tauler, Roma .
CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY, 2006, 36 (3-4) :163-176