A survey of cellulose biosynthesis in higher plants

被引:13
作者
Bessueille, Laurence [1 ]
Bulone, Vincent [2 ]
机构
[1] Univ Lyon 1, CNRS, UMR 5246, Org & Dynam Membranes Biol, F-69622 Villeurbanne, France
[2] AlbaNova Univ Ctr, Royal Inst Technol KTH, Ctr Biomimet Fibre Engn BiomimeTM, Sch Biotechnol & Swedish, SE-10691 Stockholm, Sweden
关键词
Callose; carbohydrate biosynthesis; cellulose synthase; cell wall;
D O I
10.5511/plantbiotechnology.25.315
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cellulose plays a central role in plant development and its biosynthesis represents one of the most important biochemical processes in plant biology. However, the corresponding molecular mechanisms are not well understood, despite the progress made in the past years in the identification of genes that code for the catalytic subunits of the cellulose synthases and other proteins potentially involved in cellulose formation. A major bottleneck is the high instability of the cellulose synthase complexes and their location in the plasma membrane. Additional efforts are currently being made to unravel the mechanisms of cellulose biosynthesis. Indeed, understanding how cellulose is formed and how its crystallinity is achieved is relevant not only for studying plant development, but also for improving the digestibility of the plant biomass, which is foreseen as an alternative to fossil fuels for the production of energy. This review summarizes the major unanswered questions related to the process of cellulose biosynthesis, and describes the recent progress that has been made in the area through the combination of biochemical approaches and molecular genetics.
引用
收藏
页码:315 / 322
页数:8
相关论文
共 70 条
[1]   A MEMBRANE-ASSOCIATED FORM OF SUCROSE SYNTHASE AND ITS POTENTIAL ROLE IN SYNTHESIS OF CELLULOSE AND CALLOSE IN PLANTS [J].
AMOR, Y ;
HAIGLER, CH ;
JOHNSON, S ;
WAINSCOTT, M ;
DELMER, DP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (20) :9353-9357
[2]   Molecular analysis of cellulose biosynthesis in Arabidopsis [J].
Arioli, T ;
Peng, LC ;
Betzner, AS ;
Burn, J ;
Wittke, W ;
Herth, W ;
Camilleri, C ;
Höfte, H ;
Plazinski, J ;
Birch, R ;
Cork, A ;
Glover, J ;
Redmond, J ;
Williamson, RE .
SCIENCE, 1998, 279 (5351) :717-720
[3]  
ATALLA RH, 1984, SCIENCE, V223, P283, DOI 10.1126/science.223.4633.283
[4]   On the alignment of cellulose microfibrils by cortical microtubules: a review and a model [J].
Baskin, TI .
PROTOPLASMA, 2001, 215 (1-4) :150-171
[5]   Lipid rafts in plants [J].
Bhat, RA ;
Panstruga, R .
PLANTA, 2005, 223 (01) :5-19
[6]   Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics [J].
Brown, DM ;
Zeef, LAH ;
Ellis, J ;
Goodacre, R ;
Turner, SR .
PLANT CELL, 2005, 17 (08) :2281-2295
[7]   Cellulose biosynthesis: A model for understanding the assembly of biopolymers [J].
Brown, RM ;
Saxena, IM .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2000, 38 (1-2) :57-67
[8]   The biosynthesis of cellulose [J].
Brown, RM .
JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHEMISTRY, 1996, A33 (10) :1345-1373
[9]  
BULONE, 2006, SCI LORE PLANT CELL, P87
[10]   The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes [J].
Burton, RA ;
Shirley, NJ ;
King, BJ ;
Harvey, AJ ;
Fincher, GB .
PLANT PHYSIOLOGY, 2004, 134 (01) :224-236