Numerical analysis for distributed-order differential equations

被引:184
作者
Diethelm, Kai [1 ]
Ford, Neville J. [2 ]
机构
[1] GNS Gesell Numer Simulat mbH, D-38114 Braunschweig, Germany
[2] Univ Chester, Dept Math, Chester CH1 4BJ, Cheshire, England
关键词
Distributed-order differential equation; Multi-term fractional differential equation; Numerical solution; Convergence; VOLTERRA INTEGRAL-EQUATIONS;
D O I
10.1016/j.cam.2008.07.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present and analyse a numerical method for the solution of a distributed-order differential equation of the general form integral(m)(0) A(r. D(*)(r)u(t))dr = f(t) where in is a positive real number and where the derivative D-*(r) taken to be a fractional derivative of Caputo type of order r. We give a convergence theory for our method and conclude with some numerical examples. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:96 / 104
页数:9
相关论文
共 28 条
[1]   On a fractional distributed-order oscillator [J].
Atanackovic, TM ;
Budincevic, M ;
Pilipovic, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (30) :6703-6713
[2]  
Bagley R., 2000, INT J APPL MATH, V2, P965
[3]  
Bagley R. L., 2000, Int. J. Appl. Math, V2, P865
[4]  
Brass H., 1977, Quadraturverfahren
[5]  
Caputo M, 2003, ANN GEOPHYS-ITALY, V46, P223
[6]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[7]  
Caputo M., 1969, Elasticita e Dissipazione
[8]  
Caputo M., 1995, Ann. Univ. Ferrara., V41, P73, DOI 10.1007/BF02826009
[9]  
Caputo M., 2001, FRACT CALC APPL ANAL, V4, P421
[10]  
Diethelm K, 2004, J COMPUT ANAL APPL, V6, P243