Electromagnetic fields in fractal continua

被引:65
作者
Balankin, Alexander S. [1 ]
Mena, Baltasar [2 ]
Patino, Julian [1 ]
Morales, Daniel [3 ]
机构
[1] Inst Politecn Nacl, Grp Mecan Fractal, Mexico City 07738, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Ingn, Mexico City 04510, DF, Mexico
[3] Inst Mexicano Petr, Mexico City 07730, DF, Mexico
关键词
Fractal media; Fractional metric; Electrodynamics; CONTINUOUS MEDIUM MODEL; WAVE-EQUATION; TIME; TRANSMISSION; CALCULUS;
D O I
10.1016/j.physleta.2013.01.030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fractal continuum electrodynamics is developed on the basis of a model of three-dimensional continuum Phi(3)(D) subset of E-3 with a fractal metric. The generalized forms of Maxwell equations are derived employing the local fractional vector calculus related to the Hausdorff derivative. The difference between the fractal continuum electrodynamics based on the fractal metric of continua with Euclidean topology and the electrodynamics in fractional space F-alpha accounting the fractal topology of continuum with the Euclidean metric is outlined. Some electromagnetic phenomena in fractal media associated with their fractal time and space metrics are discussed. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:783 / 788
页数:6
相关论文
共 45 条
  • [1] Electromagnetic Green's function for fractional space
    Asad, H.
    Mughal, M. J.
    Zubair, M.
    Naqvi, Q. A.
    [J]. JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2012, 26 (14-15) : 1903 - 1910
  • [2] REFLECTION AND TRANSMISSION AT DIELECTRIC-FRACTAL INTERFACE
    Asad, H. .
    Zubair, M. .
    Mughal, M. J.
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2012, 125 : 543 - 558
  • [3] Map of fluid flow in fractal porous medium into fractal continuum flow
    Balankin, Alexander S.
    Espinoza Elizarraraz, Benjamin
    [J]. PHYSICAL REVIEW E, 2012, 85 (05):
  • [4] Hydrodynamics of fractal continuum flow
    Balankin, Alexander S.
    Espinoza Elizarraraz, Benjamin
    [J]. PHYSICAL REVIEW E, 2012, 85 (02):
  • [5] On electromagnetic field in fractional space
    Baleanu, Dumitru
    Golmankhaneh, Alireza K.
    Golmankhaneh, Ali K.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) : 288 - 292
  • [6] Fractional Electromagnetic Equations Using Fractional Forms
    Baleanu, Dumitru
    Golmankhaneh, Ali Khalili
    Golmankhaneh, Alireza Khalili
    Baleanu, Mihaela Cristina
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (11) : 3114 - 3123
  • [7] A Levy flight for light
    Barthelemy, Pierre
    Bertolotti, Jacopo
    Wiersma, Diederik S.
    [J]. NATURE, 2008, 453 (7194) : 495 - 498
  • [8] Electrostatics in fractal geometry: Fractional calculus approach
    Baskin, Emmanuel
    Iomin, Alexander
    [J]. CHAOS SOLITONS & FRACTALS, 2011, 44 (4-5) : 335 - 341
  • [9] Scaling of mathematical fractals and box-counting quasi-measure
    Borodich, F. M.
    Feng, Z.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (01): : 21 - 31
  • [10] The time dependent Ginzburg-Landau equation in fractal space-time
    Buzea, C. Gh.
    Rusu, I.
    Bulancea, V.
    Badarau, Gh.
    Paun, V. P.
    Agop, M.
    [J]. PHYSICS LETTERS A, 2010, 374 (27) : 2757 - 2765