Enabling Kinetic Light Hydrocarbon Separation via Crystal Size Engineering of ZIF-8

被引:42
|
作者
Pimentel, Brian R. [1 ]
Lively, Ryan P. [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, 311 Ferst Dr NW, Atlanta, GA 30332 USA
关键词
ZEOLITIC IMIDAZOLATE FRAMEWORK-8; PRESSURE SWING ADSORPTION; METAL-ORGANIC FRAMEWORKS; MOLECULAR-SIEVE CARBON; PROPANE/PROPYLENE SEPARATION; OLEFIN/PARAFFIN SEPARATIONS; ISOTHERMAL SORPTION; PI-COMPLEXATION; 13X ZEOLITE; MEMBRANES;
D O I
10.1021/acs.iecr.6b03199
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Recent increases in shale gas production provide an excellent opportunity for advancements in the energy-efficient separation of natural gas liquids because these are increasingly used as fuel sources and chemical feedstocks. Current fractionation schemes generally involve cryogenic distillation of C-1-C-4 hydrocarbons and are extremely energy intensive. Here, we describe the first steps toward a lower energy, kinetic pressure-swing-adsorption cycle for the separation of ethane, propane, propylene, and butane using ZIF-8 as a diffusionally selective adsorbent. Crystal engineering techniques were employed to control the diffusive time scale of the separation, allowing for multiple separations using the same adsorbent within reasonable process times. Equimolar separation of ethane/propane mixtures at 293 K exhibited separation factors of 2.7 in the gas phase under nonoptimized conditions, which enhances the concentration of the feed mixture to 7.5 mol % propane. The separation performance was shown to improve to 3.8 at lower temperatures (81 mol % propane), which is attributed to differences in the activation energy of permeation of the two components. Propane/butane mixtures demonstrated a lower diffusive selectivity and almost negligible enhancement, while propylene/propane showed enhancement beyond ethane/propane due to a strong diffusive selectivity and sorption selectivities closer to unity. Single-component adsorption and diffusion results were incorporated into a computational model of the system and shown to be in relatively good agreement with the experimental values. The model was used to predict the separation system performance and recovery at various temperatures.
引用
收藏
页码:12467 / 12476
页数:10
相关论文
共 50 条
  • [1] Postsynthetic Modification of ZIF-8 Membranes via Membrane Surface Ligand Exchange for Light Hydrocarbon Gas Separation Enhancement
    James, Joshua B.
    Lang, Lin
    Meng, Lie
    Lin, Jerry Y. S.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (03) : 3893 - 3902
  • [2] Exceptional Adsorption and Separation Properties of the Molecular Sieve ZIF-8
    Boehme, Ulrike
    Paula, Carolin
    Marthala, V. R. Reddy
    Caro, Juergen
    Hartmann, Martin
    CHEMIE INGENIEUR TECHNIK, 2013, 85 (11) : 1707 - 1713
  • [3] Propylene Enrichment via Kinetic Vacuum Pressure Swing Adsorption Using ZIF-8 Fiber Sorbents
    Pimentel, Brian R.
    Lively, Ryan P.
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (42) : 36323 - 36331
  • [4] Adsorption of n-alkanes in ZIF-8: Influence of crystal size and framework dynamics
    Slawek, Andrzej
    Roztocki, Kornel
    Majda, Dorota
    Jaskaniec, Sonia
    Vlugt, Thijs J. H.
    Makowski, Waclaw
    MICROPOROUS AND MESOPOROUS MATERIALS, 2021, 312
  • [5] Role of crystal size on swing-effect and adsorption induced structure transition of ZIF-8
    Tian, Tian
    Wharmby, Michael T.
    Parra, Jose B.
    Ania, Conchi O.
    Fairen-Jimenez, David
    DALTON TRANSACTIONS, 2016, 45 (16) : 6893 - 6900
  • [6] Biobutanol Separation with the Metal-Organic Framework ZIF-8
    Saint Remi, Julien Cousin
    Remy, Tom
    Van Hunskerken, Vincent
    van de Perre, Stijn
    Duerinck, Tim
    Maes, Michael
    De Vos, Dirk
    Gobechiya, Elena
    Kirschhock, Christine E. A.
    Baron, Gino V.
    Denayer, Joeri F. M.
    CHEMSUSCHEM, 2011, 4 (08) : 1074 - 1077
  • [7] Size Control and Biomedical Applications of ZIF-8 Nanoparticles
    Hu, Qiangqiang
    Guo, Heze
    Dou, Hongjing
    PROGRESS IN CHEMISTRY, 2020, 32 (05) : 656 - 664
  • [8] Exploring the Framework Hydrophobicity and Flexibility of ZIF-8: From Biofuel Recovery to Hydrocarbon Separations
    Zhang, Ke
    Lively, Ryan P.
    Zhang, Chen
    Chance, Ronald R.
    Koros, William J.
    Sholl, David S.
    Nair, Sankar
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (21): : 3618 - 3622
  • [9] ZIF-8 Membrane Separation Performance Tuning by Vapor Phase Ligand Treatment
    Eum, Kiwon
    Hayashi, Mikio
    De Mello, Matheus Dorneles
    Xue, Feng
    Kwon, Hyuk Taek
    Tsapatsis, Michael
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (46) : 16390 - 16394
  • [10] Interfacial nanoarchitectonics for ZIF-8 membranes with enhanced gas separation
    Chen, Season S.
    Yang, Zhen-Jie
    Chang, Chia-Hao
    Koh, Hoong-Uei
    Al-Saeedi, Sameerah, I
    Tung, Kuo-Lun
    Wu, Kevin C-W
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2022, 13 : 313 - 324