Atmospheric ammonia measurements along the coastal lines of Southeastern China: Implications for inorganic nitrogen deposition to coastal waters

被引:28
作者
Wu, Shui-Ping [1 ,2 ]
Dai, Lu-Hong [1 ]
Wei, Ya [1 ]
Zhu, Heng [1 ]
Zhang, Yin-Ju [1 ]
Schwab, James J. [3 ]
Yuan, Chung-Shin [1 ,4 ]
机构
[1] Xiamen Univ, Coll Environm & Ecol, Ctr Marine Environm Chem & Toxicol, Xiamen 361102, Peoples R China
[2] Xiamen Univ, State Key Lab Marine Environm Sci, Xiamen 361102, Peoples R China
[3] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12203 USA
[4] Sun Yat Sen Univ, Inst Environm Engn, Kaohsiung 80424, Taiwan
基金
中国国家自然科学基金;
关键词
Nitrogen deposition; Ammonia; Ammonium; Nitrate; Xiamen Bay; WET DEPOSITION; DRY DEPOSITION; CHEMICAL CHARACTERISTICS; EMISSIONS INVENTORIES; PRIMARY PRODUCTIVITY; ATLANTIC-OCEAN; YELLOW SEA; NUTRIENTS; AEROSOL; URBAN;
D O I
10.1016/j.atmosenv.2017.12.040
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ambient NH3 concentrations were determined using Ogawa passive samplers along the coastal lines of southeast China from June 2015 to May 2017. Additional monitoring of PM2.5 and precipitation around Xiamen Bay during the period from November 2015 to May 2017 were carried out to estimate atmospheric inorganic nitrogen (IN) deposition to the bay. Distinct seasonal variations of ambient NH3 were observed with summer averages 1.41-5.56 times higher than winter, which agreed well with the seasonal trend of air temperature. Nitrate concentrations (pNO(3)(-)) in PM2.5 were significantly higher than ammonium concentrations (pNH(4)(+)), and both species showed higher concentrations in winter and spring and lower values in summer and fall which were influenced mainly by the monsoon cycle, gas-to-particle transformation process and rain washout. Paired [testing revealed that no significant differences of pNO(3) and pNH(4)(+) between the urban and suburban sites around the Xiamen Bay. Unlike pNO(3)(-) and pNH(4)(+), there were no clear seasonal trends for NH4+ and NO3- concentrations in precipitation samples (wNH(4)(+) and wNO(3)(-)). On average, the deposition of IN consisted of NH3- (27.4-28.2%) and pNO(3)(-)N (25.9-26.8%), followed by pNH(4)(+)-N (17.0-17.7%), wNH(4)(+)-N (14.5%), wNO(3)(-)N (13.3-13.8%) and NO2-N (0.35-0.46%); and showed distinct seasonal trends with higher values in winter/spring and lower values in summer/fall. In 2016, the total IN deposition was determined to be 36.45 and 35.92 kg N ha(-1) at the urban and suburban sites around the Xiamen Bay, respectively. The proportion of IN deposition to total IN loads (terrestrial + atmospheric), varied over the range of 7.1-13.3% depending on the data source of riverine influx. Our observations revealed that the total IN deposition could account for 9.6-25.1% (based on primary productivity over Taiwan Strait) and 1.7-5.3% (based on primary productivity in Guangdong coastal region) of new productivity in Xiamen Bay, respectively. As an important nutrient source, the atmospheric deposition of N could have significant impacts on coastal marine ecosystems.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 76 条
  • [71] Characteristics of nutrients and phytoplankton productivity in Guangdong coastal regions, South China
    Zhang, Ling
    Shi, Zhen
    Zhang, Jingping
    Jiang, Zhijian
    Huang, Liangmin
    Huang, Xiaoping
    [J]. MARINE POLLUTION BULLETIN, 2016, 113 (1-2) : 572 - 578
  • [72] Zhang Y, 2010, J GEOPHYS RES, V115, P1, DOI DOI 10.1029/2009JD012743
  • [73] [张艳 Zhang Yan], 2004, [气候与环境研究, Climatic and environmental research], V9, P591
  • [74] Zhao P., 2016, THESIS
  • [75] A comprehensive ammonia emission inventory with high-resolution and its evaluation in the Beijing-Tianjin-Hebei (BTH) region, China
    Zhou, Ying
    Cheng, Shuiyuan
    Lang, Jianlei
    Chen, Dongsheng
    Zhao, Beibei
    Liu, Chao
    Xu, Ran
    Li, Tingting
    [J]. ATMOSPHERIC ENVIRONMENT, 2015, 106 : 305 - 317
  • [76] Estimate of dry deposition fluxes of nutrients over the East China Sea: The implication of aerosol ammonium to non-sea-salt sulfate ratio to nutrient deposition of coastal oceans
    Zhu, Li
    Chen, Ying
    Guo, Lin
    Wang, Fujiang
    [J]. ATMOSPHERIC ENVIRONMENT, 2013, 69 : 131 - 138