Dynamics simulations for engineering macromolecular interactions

被引:9
|
作者
Robinson-Mosher, Avi [1 ,2 ]
Shinar, Tamar [3 ]
Silver, Pamela A. [1 ,2 ]
Way, Jeffrey [1 ]
机构
[1] Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Syst Biol, Boston, MA 02115 USA
[3] Univ Calif Riverside, Comp Sci & Engn Dept, Riverside, CA 92521 USA
基金
美国国家卫生研究院;
关键词
PROTEIN-PROTEIN ASSOCIATION; GROWTH-FACTOR RECEPTOR; MOLECULAR-DYNAMICS; DNA RECOGNITION; ACTIVATION; TIME; SPECIFICITY; CODE;
D O I
10.1063/1.4810915
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The predictable engineering of well-behaved transcriptional circuits is a central goal of synthetic biology. The artificial attachment of promoters to transcription factor genes usually results in noisy or chaotic behaviors, and such systems are unlikely to be useful in practical applications. Natural transcriptional regulation relies extensively on protein-protein interactions to insure tightly controlled behavior, but such tight control has been elusive in engineered systems. To help engineer protein-protein interactions, we have developed a molecular dynamics simulation framework that simplifies features of proteins moving by constrained Brownian motion, with the goal of performing long simulations. The behavior of a simulated protein system is determined by summation of forces that include a Brownian force, a drag force, excluded volume constraints, relative position constraints, and binding constraints that relate to experimentally determined on-rates and off-rates for chosen protein elements in a system. Proteins are abstracted as spheres. Binding surfaces are defined radially within a protein. Peptide linkers are abstracted as small protein-like spheres with rigid connections. To address whether our framework could generate useful predictions, we simulated the behavior of an engineered fusion protein consisting of two 20 000 Da proteins attached by flexible glycine/serine-type linkers. The two protein elements remained closely associated, as if constrained by a random walk in three dimensions of the peptide linker, as opposed to showing a distribution of distances expected if movement were dominated by Brownian motion of the protein domains only. We also simulated the behavior of fluorescent proteins tethered by a linker of varying length, compared the predicted Forster resonance energy transfer with previous experimental observations, and obtained a good correspondence. Finally, we simulated the binding behavior of a fusion of two ligands that could simultaneously bind to distinct cell-surface receptors, and explored the landscape of linker lengths and stiffnesses that could enhance receptor binding of one ligand when the other ligand has already bound to its receptor, thus, addressing potential mechanisms for improving targeted signal transduction proteins. These specific results have implications for the design of targeted fusion proteins and artificial transcription factors involving fusion of natural domains. More broadly, the simulation framework described here could be extended to include more detailed system features such as non-spherical protein shapes and electrostatics, without requiring detailed, computationally expensive specifications. This framework should be useful in predicting behavior of engineered protein systems including binding and dissociation reactions. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] DYNAMICS OF MACROMOLECULAR INTERACTIONS
    ALLISON, SA
    MCCAMMON, JA
    NORTHRUP, SH
    ACS SYMPOSIUM SERIES, 1986, 302 : 216 - 231
  • [2] DYNAMICS OF MACROMOLECULAR INTERACTIONS
    ALLISON, SA
    MCCAMMON, JA
    NORTHRUP, SH
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1984, 188 (AUG): : 30 - MACR
  • [3] Molecular dynamics simulations of macromolecular crystals
    Cerutti, David S.
    Case, David A.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2019, 9 (04)
  • [4] Molecular simulations of conformational dynamics of macromolecular assembly
    Li, GH
    Cui, Q
    BIOPHYSICAL JOURNAL, 2003, 84 (02) : 360A - 360A
  • [6] Molecular dynamics simulations of large macromolecular complexes
    Perilla, Juan R.
    Goh, Boon Chong
    Cassidy, C. Keith
    Liu, Bo
    Bernardi, Rafael C.
    Rudack, Till
    Yu, Hang
    Wu, Zhe
    Schulten, Klaus
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2015, 31 : 64 - 74
  • [7] Building macromolecular assembly dynamics into cell-scale simulations
    Guo, S.
    Johnson, M. E.
    Liu, H. Z.
    Jhaveri, A.
    Sang, M.
    MOLECULAR BIOLOGY OF THE CELL, 2023, 34 (02) : 352 - 352
  • [8] Stochastic dynamics simulations of macromolecular diffusion in a model of the cytoplasm of Escherichia coli
    Bicout, DJ
    Field, MJ
    JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (07): : 2489 - 2497
  • [9] RELATIONSHIP OF MACROMOLECULAR SCIENCE AND MACROMOLECULAR ENGINEERING
    CHALLIS, AAL
    JOURNAL OF POLYMER SCIENCE PART C-POLYMER SYMPOSIUM, 1978, (62): : 301 - 308
  • [10] SIMULATIONS OF MACROMOLECULAR SYSTEMS
    LUDOVICE, PJ
    DAVIDSON, MG
    SUTER, UW
    ACS SYMPOSIUM SERIES, 1987, 353 : 162 - 174