Direct numerical simulation of turbulent flow over a backward-facing step

被引:743
作者
Le, H [1 ]
Moin, P [1 ]
Kim, J [1 ]
机构
[1] UNIV CALIF LOS ANGELES, DEPT MECH AEROSP & NUCL ENGN, LOS ANGELES, CA 90024 USA
关键词
D O I
10.1017/S0022112096003941
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Turbulent flow over a backward-facing step is studied by direct numerical solution of the Navier-Stokes equations. The simulation was conducted at a Reynolds number of 5100 based on the step height h and inlet free-stream velocity, and an expansion ratio of 1.20. Temporal behaviour of spanwise-averaged pressure fluctuation contours and reattachment length show evidence of an approximate periodic behaviour of the free shear layer with a Strouhal number of 0.06. The instantaneous velocity fields indicate that the reattachment location Varies in the spanwise direction, and oscillates about a mean value of 6.28h. Statistical results show excellent agreement with experimental data by Jovic & Driver (1994). Of interest are two observations not previously reported for the backward-facing step flow: (a) at the relatively low Reynolds number considered, large negative skin friction is seen in the recirculation region; the peak \C-f\ is about 2.5 times the value measured in experiments at high Reynolds numbers; (b) the velocity profiles in the recovery region fall below the universal log-law. The deviation of the velocity profile from the log-law indicates that the turbulent boundary layer is not fully recovered at 20 step heights behind the separation. The budgets of al Reynolds stress components have been computed. The turbulent kinetic energy budget in the recirculation region is similar to that of a turbulent mixing layer. The turbulent transport term makes a significant contribution to the budget and the peak dissipation is about 60% of the peak production. The velocity-pressure gradient correlation and viscous diffusion are negligible in the shear layer, but both are significant in the near-wall region. This trend is seen throughout the recirculation and reattachment region. In the recovery region, the budgets show that effects of the free shear layer are still present.
引用
收藏
页码:349 / 374
页数:26
相关论文
共 47 条
[1]  
Adams E. W., 1984, MD43 STANF U DEP MEC
[2]  
ADAMS EW, 1985, P 5 INT S TURB SHEAR
[3]   Large-eddy simulation of turbulent confined coannular jets [J].
Akselvoll, K ;
Moin, P .
JOURNAL OF FLUID MECHANICS, 1996, 315 :387-411
[4]  
[Anonymous], 1980, THESIS STANFORD U
[5]  
[Anonymous], 1991, 911787 AIAA
[6]  
[Anonymous], 1994, NASA TM 108807
[7]   EXPERIMENTAL AND THEORETICAL INVESTIGATION OF BACKWARD-FACING STEP FLOW [J].
ARMALY, BF ;
DURST, F ;
PEREIRA, JCF ;
SCHONUNG, B .
JOURNAL OF FLUID MECHANICS, 1983, 127 (FEB) :473-496
[8]   REATTACHMENT AND RELAXATION OF A TURBULENT SHEAR LAYER [J].
BRADSHAW, P ;
WONG, FYF .
JOURNAL OF FLUID MECHANICS, 1972, 52 (MAR14) :113-&
[9]  
BRADSHAW P, 1965, 1144 AERO NAT PHYS L
[10]   TURBULENCE STRUCTURE OF A REATTACHING MIXING LAYER [J].
CHANDRSUDA, C ;
BRADSHAW, P .
JOURNAL OF FLUID MECHANICS, 1981, 110 (SEP) :171-194