A Novel Nonlinear Control Law with Trajectory Tracking Capability for Nonholonomic Mobile Robots: Closed-Form Solution Design

被引:5
作者
Chen, Yung-Hsiang [1 ]
Li, Tzuu-Hseng S. [1 ]
Chen, Yung-Yue [2 ]
机构
[1] Natl Cheng Kung Univ, Dept Elect Engn, Tainan, Tainan County, Taiwan
[2] Natl Cheng Kung Univ, Dept Syst & Naval Mechatron Engn, Tainan, Tianan County, Taiwan
来源
APPLIED MATHEMATICS & INFORMATION SCIENCES | 2013年 / 7卷 / 02期
关键词
nonholonomic mobile robot; nonlinear robust control law; H-2; closed-form solution;
D O I
10.12785/amis/070244
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A novel nonlinear robust trajectory tracking control law for nonholonomic mobile robot is presented in this paper. This approach can be applied to generate trajectory tracking control commands on nonholonomic mobile robot movement. The design objective is to specify one nonlinear robust control law that satisfies the H-2 performance, for the nonlinear trajectory tracking control of nonholonomic mobile robot. In general, it is hard to obtain the closed-form solution from this nonlinear trajectory-tracking problem. Fortunately, because of the skew symmetric property of the trajectory tracking system of the nonholonomic mobile robot and adequate choice of state variable transformation, the H-2 trajectory-tracking problems can be reduced to solving one nonlinear time varying Riccati-like equations. Furthermore, one closed-form solution to this nonlinear time varying Riccati-like equation can be obtained with very simple forms for the preceding control design. Finally, there are two practical testing conditions: circular and square like reference trajectories are used for performance verifications.
引用
收藏
页码:749 / 754
页数:6
相关论文
共 10 条
  • [1] Structural properties and classification of kinematic and dynamic models of wheeled mobile robots
    Campion, G
    Bastin, G
    DAndreaNovel, B
    [J]. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1996, 12 (01): : 47 - 62
  • [2] EP-based kinematic control and adaptive fuzzy sliding-mode dynamic control for wheeled mobile robots
    Chen, Chih-Yang
    Li, Tzuu-Hseng S.
    Yeh, Ying-Chieh
    [J]. INFORMATION SCIENCES, 2009, 179 (1-2) : 180 - 195
  • [3] DANDREANOVEL B, 1992, 1992 IEEE INTERNATIONAL CONF ON ROBOTICS AND AUTOMATION : PROCEEDINGS, VOLS 1-3, P2527, DOI 10.1109/ROBOT.1992.220061
  • [4] Simple neuron-based adaptive controller for a nonholonomic mobile robot including actuator dynamics
    Das, Tamoghna
    Kar, I. N.
    Chaudhury, S.
    [J]. NEUROCOMPUTING, 2006, 69 (16-18) : 2140 - 2151
  • [5] Control of a nonholonomic mobile robot using neural networks
    Fierro, R
    Lewis, FL
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (04): : 589 - 600
  • [6] QUADRATIC OPTIMIZATION OF MOTION COORDINATION AND CONTROL
    JOHANSSON, R
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (11) : 1197 - 1208
  • [7] Kanayama Y., 1990, P IEEE INT C ROB AUT, V1, P384, DOI DOI 10.1109/ROBOT.1990.126006
  • [8] WMR control via dynamic feedback linearization: Design, implementation, and experimental validation
    Oriolo, G
    De Luca, A
    Vendittelli, M
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2002, 10 (06) : 835 - 852
  • [9] Ping Z., 1997, AUTOMATICA, V33, P1393
  • [10] Weiguo W.U., 1999, P IEEE RSJ INT C INT, P1822